Knowledge on the genetic epidemiology of disorders in the dog population has implications for both veterinary medicine and sustainable breeding. Limited data on frequencies of genetic disease variants across breeds exists, and the disease heritage of mixed breed dogs remains poorly explored to date. Advances in genetic screening technologies now enable comprehensive investigations of the canine disease heritage, and generate health-related big data that can be turned into action.
View Article and Find Full Text PDFBackground: A large and growing number of inherited genetic disease mutations are now known in the dog. Frequencies of these mutations are typically examined within the breed of discovery, possibly in related breeds, but nearly always in purebred dogs. No report to date has examined the frequencies of specific genetic disease mutations in a large population of mixed-breed dogs.
View Article and Find Full Text PDFFollowing the first identification of a disease-causing mutation in dogs in 1989 and the more recent completion of canine and feline genome sequences, much progress has been made in the molecular characterization of hereditary diseases in dogs and cats. To increase access to information on diagnosing hereditary diseases in dogs and cats, a web application has been developed to collect, organize and display information on available DNA tests and other supporting information, including gene and chromosomal locations, mutations, primary research citations and disease descriptions. The DNA testing information can be accessed at the URL: http://research.
View Article and Find Full Text PDFInsulin-deficiency diabetes in dogs shares some similarities with human latent autoimmune diabetes of adults (LADA). Canine diabetes is likely to have a complex pathogenesis with multiple genes contributing to overall susceptibility and/or disease progression. An association has previously been shown between canine diabetes and MHC class II genes, although other genes are also likely to contribute to the genetic risk.
View Article and Find Full Text PDFDogs are of increasing interest as models for human diseases, and many canine population-association studies are beginning to emerge. The choice of breeds for such studies should be informed by a knowledge of factors such as inbreeding, genetic diversity, and population structure, which are likely to depend on breed-specific selective breeding patterns. To address the lack of such studies we have exploited one of the world's most extensive resources for canine population-genetics studies: the United Kingdom (UK) Kennel Club registration database.
View Article and Find Full Text PDFGenes potentially involved in the pathology of canine atopic dermatitis (AD) were identified using gene expression microarrays. Total RNA extracted from skin biopsies was hybridized to an Agilent Technologies custom-designed 22K canine array. The arrays were analysed using Genedata Analyst software.
View Article and Find Full Text PDFCanine diabetes is a complex genetic disease of unknown aetiology. It affects 0.005-1.
View Article and Find Full Text PDFHardy-Weinberg equilibrium (HWE) is a useful indicator of genotype frequencies within a population and whether they are based on a valid definition of alleles and a randomly mating sample. HWE assumes a stable population of adequate size without selective pressures and is used in human genetic studies as a guide to data quality by comparing observed genotype frequencies to those expected within a population. The calculation of genetic associations in case-control studies assume that the population is "in HWE.
View Article and Find Full Text PDFThe domestic dog exhibits greater diversity in body size than any other terrestrial vertebrate. We used a strategy that exploits the breed structure of dogs to investigate the genetic basis of size. First, through a genome-wide scan, we identified a major quantitative trait locus (QTL) on chromosome 15 influencing size variation within a single breed.
View Article and Find Full Text PDF