Publications by authors named "Neale B"

Linear mixed models are a powerful statistical tool for identifying genetic associations and avoiding confounding. However, existing methods are computationally intractable in large cohorts and may not optimize power. All existing methods require time cost O(MN(2)) (where N is the number of samples and M is the number of SNPs) and implicitly assume an infinitesimal genetic architecture in which effect sizes are normally distributed, which can limit power.

View Article and Find Full Text PDF

Both polygenicity (many small genetic effects) and confounding biases, such as cryptic relatedness and population stratification, can yield an inflated distribution of test statistics in genome-wide association studies (GWAS). However, current methods cannot distinguish between inflation from a true polygenic signal and bias. We have developed an approach, LD Score regression, that quantifies the contribution of each by examining the relationship between test statistics and linkage disequilibrium (LD).

View Article and Find Full Text PDF

Background: Exome sequencing is a promising tool for gene mapping in Mendelian disorders. We used this technique in an attempt to identify novel genes underlying monogenic dyslipidemias.

Methods And Results: We performed exome sequencing on 213 selected family members from 41 kindreds with suspected Mendelian inheritance of extreme levels of low-density lipoprotein cholesterol (after candidate gene sequencing excluded known genetic causes for high low-density lipoprotein cholesterol families) or high-density lipoprotein cholesterol.

View Article and Find Full Text PDF

Contactins and Contactin-Associated Proteins, and Contactin-Associated Protein-Like 2 (CNTNAP2) in particular, have been widely cited as autism risk genes based on findings from homozygosity mapping, molecular cytogenetics, copy number variation analyses, and both common and rare single nucleotide association studies. However, data specifically with regard to the contribution of heterozygous single nucleotide variants (SNVs) have been inconsistent. In an effort to clarify the role of rare point mutations in CNTNAP2 and related gene families, we have conducted targeted next-generation sequencing and evaluated existing sequence data in cohorts totaling 2704 cases and 2747 controls.

View Article and Find Full Text PDF

Over the last few years, genetics research has made significant strides in identifying many risk factors for schizophrenia and bipolar disorder. These risk factors include inherited common single nucleotide polymorphisms, copy number variants, and rare single nucleotide variants, as well as rare de novo variants. For all variants, the common theme has been that of polygenicity, meaning that many small genetic risk factors influence risk in the population and that no gene or variant on its own has been shown to be fully deterministic of schizophrenia or bipolar.

View Article and Find Full Text PDF

Regulatory and coding variants are known to be enriched with associations identified by genome-wide association studies (GWASs) of complex disease, but their contributions to trait heritability are currently unknown. We applied variance-component methods to imputed genotype data for 11 common diseases to partition the heritability explained by genotyped SNPs (hg(2)) across functional categories (while accounting for shared variance due to linkage disequilibrium). Extensive simulations showed that in contrast to current estimates from GWAS summary statistics, the variance-component approach partitions heritability accurately under a wide range of complex-disease architectures.

View Article and Find Full Text PDF

Background: Cancers arise from multiple acquired mutations, which presumably occur over many years. Early stages in cancer development might be present years before cancers become clinically apparent.

Methods: We analyzed data from whole-exome sequencing of DNA in peripheral-blood cells from 12,380 persons, unselected for cancer or hematologic phenotypes.

View Article and Find Full Text PDF

The genetic architecture of autism spectrum disorder involves the interplay of common and rare variants and their impact on hundreds of genes. Using exome sequencing, here we show that analysis of rare coding variation in 3,871 autism cases and 9,937 ancestry-matched or parental controls implicates 22 autosomal genes at a false discovery rate (FDR) < 0.05, plus a set of 107 autosomal genes strongly enriched for those likely to affect risk (FDR < 0.

View Article and Find Full Text PDF

Autism spectrum disorders (ASDs) are a highly heterogeneous group of conditions--phenotypically and genetically--although the link between phenotypic variation and differences in genetic architecture is unclear. This study aimed to determine whether differences in cognitive impairment and symptom severity reflect variation in the degree to which ASD cases reflect de novo or familial influences. Using data from more than 2,000 simplex cases of ASD, we examined the relationship between intelligence quotient (IQ), behavior and language assessments, and rate of de novo loss of function (LOF) mutations and family history of broadly defined psychiatric disease (depressive disorders, bipolar disorder, and schizophrenia; history of psychiatric hospitalization).

View Article and Find Full Text PDF

Objective: Clinically, attention-deficit/hyperactivity disorder (ADHD) is characterized by hyperactivity, impulsivity, and inattention and is among the most common childhood disorders. These same traits that define ADHD are variable in the general population, and the clinical diagnosis may represent the extreme end of a continuous distribution of inattentive and hyperactive behaviors. This hypothesis can be tested by assessing the predictive value of polygenic risk scores derived from a discovery sample of ADHD patients in a target sample from the general population with continuous scores of inattention and hyperactivity.

View Article and Find Full Text PDF

Clozapine is a particularly effective antipsychotic medication but its use is curtailed by the risk of clozapine-induced agranulocytosis/granulocytopenia (CIAG), a severe adverse drug reaction occurring in up to 1% of treated individuals. Identifying genetic risk factors for CIAG could enable safer and more widespread use of clozapine. Here we perform the largest and most comprehensive genetic study of CIAG to date by interrogating 163 cases using genome-wide genotyping and whole-exome sequencing.

View Article and Find Full Text PDF

Objective: Obsessive-compulsive disorder (OCD) and Tourette's syndrome are highly heritable neurodevelopmental disorders that are thought to share genetic risk factors. However, the identification of definitive susceptibility genes for these etiologically complex disorders remains elusive. The authors report a combined genome-wide association study (GWAS) of Tourette's syndrome and OCD.

View Article and Find Full Text PDF

Spontaneously arising (de novo) mutations have an important role in medical genetics. For diseases with extensive locus heterogeneity, such as autism spectrum disorders (ASDs), the signal from de novo mutations is distributed across many genes, making it difficult to distinguish disease-relevant mutations from background variation. Here we provide a statistical framework for the analysis of excesses in de novo mutation per gene and gene set by calibrating a model of de novo mutation.

View Article and Find Full Text PDF

Objective: Obsessive-compulsive disorder (OCD) and Tourette syndrome (TS) are heritable neurodevelopmental disorders with a partially shared genetic etiology. This study represents the first genome-wide investigation of large (>500 kb), rare (<1%) copy number variants (CNVs) in OCD and the largest genome-wide CNV analysis in TS to date.

Method: The primary analyses used a cross-disorder design for 2,699 case patients (1,613 ascertained for OCD, 1,086 ascertained for TS) and 1,789 controls.

View Article and Find Full Text PDF

The objective of this analysis was to examine the genetic architecture of diverse cognitive abilities in children and adolescents, including the magnitude of common genetic effects and patterns of shared and unique genetic influences. Subjects included 3689 members of the Philadelphia Neurodevelopmental Cohort, a general population sample comprising those aged 8-21 years who completed an extensive battery of cognitive tests. We used genome-wide complex trait analysis to estimate the SNP-based heritability of each domain, as well as the genetic correlation between all domains that showed significant genetic influence.

View Article and Find Full Text PDF

Large-scale comparisons of patients and healthy controls have unearthed genetic risk factors associated with a range of neurological and psychiatric illnesses. Meanwhile, brain imaging studies are increasing in size and scope, revealing disease and genetic effects on brain structure and function, and implicating neural pathways and causal mechanisms. With the advent of global neuroimaging consortia, imaging studies are now well powered to discover genetic variants that reliably affect the brain.

View Article and Find Full Text PDF

Background: Whole-exome sequencing studies in autism spectrum disorder (ASD) have identified de novo mutations in novel candidate genes, including the synaptic gene Eighty-five Requiring 3A (EFR3A). EFR3A is a critical component of a protein complex required for the synthesis of the phosphoinositide PtdIns4P, which has a variety of functions at the neural synapse. We hypothesized that deleterious mutations in EFR3A would be significantly associated with ASD.

View Article and Find Full Text PDF

Schizophrenia (SCZ) is a highly heritable neuropsychiatric disorder of complex genetic etiology. Previous genome-wide surveys have revealed a greater burden of large, rare copy number variations (CNVs) in SCZ cases and identified multiple rare recurrent CNVs that increase risk of SCZ although with incomplete penetrance and pleiotropic effects. Identification of additional recurrent CNVs and biological pathways enriched for SCZ CNVs requires greater sample sizes.

View Article and Find Full Text PDF

With the dramatic technological developments of genome-wide association single-nucleotide polymorphism (SNP) chips and next generation sequencing, human geneticists now have the ability to assay genetic variation at ever-rarer allele frequencies. To fully understand the impact of these rare variants on common, complex diseases, we must be able to accurately assess their statistical significance. However, it is well established that classical association tests are not appropriate for the analysis of low-frequency variation, giving spurious findings when observed counts are too few.

View Article and Find Full Text PDF

Here, we extended our findings from a genome-wide association study of the euphoric response to d-amphetamine in healthy human volunteers by identifying enrichment between SNPs associated with response to d-amphetamine and SNPs associated with psychiatric disorders. We found that SNPs nominally associated (P ≤ 0.05 and P ≤ 0.

View Article and Find Full Text PDF

In most complex diseases, much of the heritability remains unaccounted for by common variants. It has been postulated that lower-frequency variants contribute to the remaining heritability. Here, we describe a method to test for polygenic inheritance from lower-frequency variants by using GWAS summary association statistics.

View Article and Find Full Text PDF
Article Synopsis
  • Genetic studies have identified many genetic loci linked to diseases and traits, but most known genes account for less than half of heritability, leading to the theory that rare genetic variants may be important.
  • Common variant studies (CVAS) and rare variant studies (RVAS) are closely related but focus on different types of genetic variants, with the paper outlining their similarities and differences along with a framework for designing RVAS.
  • Effective RVAS require large sample sizes, with recommendations suggesting at least 25,000 cases for discovery to ensure reliable results, emphasizing the need for comprehensive data in both common and rare variant studies.
View Article and Find Full Text PDF

The direct estimation of heritability from genome-wide common variant data as implemented in the program Genome-wide Complex Trait Analysis (GCTA) has provided a means to quantify heritability attributable to all interrogated variants. We have quantified the variance in liability to disease explained by all SNPs for two phenotypically-related neurobehavioral disorders, obsessive-compulsive disorder (OCD) and Tourette Syndrome (TS), using GCTA. Our analysis yielded a heritability point estimate of 0.

View Article and Find Full Text PDF

Triglycerides are transported in plasma by specific triglyceride-rich lipoproteins; in epidemiological studies, increased triglyceride levels correlate with higher risk for coronary artery disease (CAD). However, it is unclear whether this association reflects causal processes. We used 185 common variants recently mapped for plasma lipids (P < 5 × 10(-8) for each) to examine the role of triglycerides in risk for CAD.

View Article and Find Full Text PDF