Ice-sheet responses to climate warming and associated sea-level rise depend sensitively on the form of the slip law that relates drag at the beds of glaciers to their slip velocity and basal water pressure. Process-based models of glacier slip over idealized, hard (rigid) beds with water-filled cavities yield slip laws in which drag decreases with increasing slip velocity or water pressure (rate-weakening drag). We present results of a process-based, three-dimensional model of glacier slip applied to measured bed topographies.
View Article and Find Full Text PDFSlip of marine-terminating ice streams over beds of deformable till is responsible for most of the contribution of the West Antarctic Ice Sheet to sea level rise. Flow models of the ice sheet and till-bedded glaciers elsewhere require a law that relates slip resistance, slip velocity, and water pressure at the bed. We present results of experiments in which pressurized ice at its melting temperature is slid over a water-saturated till bed.
View Article and Find Full Text PDFStearns and van der Veen (Reports, 20 July 2018, p. 273) conclude that fast glacier sliding is independent of basal drag (friction), even where drag balances most of the driving stress. This conclusion raises fundamental physical issues, the most striking of which is that sliding velocity would be independent of stresses imparted through the ice column, including gravitational driving stress.
View Article and Find Full Text PDFIn a laboratory experiment we investigated micro- and nanoscale changes in fossil diatom valves and in the texture of diatomaceous sediments that result from ice sheet overburden and subglacial shearing. Our experiment included compression and shearing of Antarctic diatom-rich sediments in a ring shear device and comparison of experimental samples with natural glacial sediments from the Antarctic continental shelf. The purpose of the experiment is to establish objective criteria for analyzing subglacial processes and interpreting the origin of glacial-geologic features on the Antarctic continental shelf.
View Article and Find Full Text PDFGlacier movement is resisted partially by debris, either within glaciers or under glaciers in water-saturated layers. In experiments beneath a thick, sliding glacier, ice containing 2 to 11% debris exerted shear traction of 60 to 200 kilopascals on a smooth rock bed, comparable to the total shear traction beneath glaciers and contrary to the usual assumption that debris-bed friction is negligible. Imposed pore-water pressure that was 60 to 100% of the normal stress in a subglacial debris layer reduced shear traction on the debris sufficiently to halt its deformation and cause slip of ice over the debris.
View Article and Find Full Text PDF