SUMMARYUnderstanding the dynamic adaptive plasticity of microorganisms has been advanced by studying their responses to extreme environments. Spaceflight research platforms provide a unique opportunity to study microbial characteristics in new extreme adaptational modes, including sustained exposure to reduced forces of gravity and associated low fluid shear force conditions. Under these conditions, unexpected microbial responses occur, including alterations in virulence, antibiotic and stress resistance, biofilm formation, metabolism, motility, and gene expression, which are not observed using conventional experimental approaches.
View Article and Find Full Text PDFAerosp Med Hum Perform
September 2020
Numerous issues in mental health benefit from technological innovation. An example involves the mental health challenges of long-duration spaceflight (such as a Mars mission), including prolonged confinement, microgravity, and different sunlight exposure lengths. Persisting on Earth are global mental health challenges stemming from disease burdens, limited interview-based diagnostic systems, trial-and-error treatment approaches, and suboptimal access.
View Article and Find Full Text PDFLiving bone is a complex, three-dimensional composite material consisting of numerous cell types spatially organized within a mineralized extracellular matrix. To date, mechanistic investigation of the complex cellular level cross-talk between the major bone-forming cells involved in the response of bone to mechanical and biochemical stimuli has been hindered by the lack of a suitable in vitro model that captures the "coupled" nature of this response. Using a novel rotational co-culture approach, we have generated large (>4mm diameter), three-dimensional mineralized tissue constructs from a mixture of normal human primary osteoblast and osteoclast precursor cells without the need for any exogenous osteoconductive scaffolding material that might interfere with such cell-cell interactions.
View Article and Find Full Text PDFGenetic response suites in human lymphocytes in response to microgravity are important to identify and study further to augment physiological adaptation to new milieus. Human peripheral blood from normal donors was used to isolate peripheral blood mononuclear cells. Blood traverses through most organs and hence is a suitable overall physiological predictor.
View Article and Find Full Text PDFExposure to altered microgravity during space travel induces changes in the brain and these are reflected in many of the physical behavior seen in the astronauts. The vulnerability of the brain to microgravity stress has been reviewed and reported. Identifying microgravity-induced changes in the brain proteome may aid in understanding the impact of the microgravity environment on brain function.
View Article and Find Full Text PDFIntroduction: Spaceflight involves numerous biological stressors that could affect long-term cancer incidence and tumor behavior. Ground-based models of microgravity can be used to investigate in vitro and in vivo tumor growth as a preparation for later work in space. The incidence of tumor growth and carcinogenesis in microgravity is as yet unknown.
View Article and Find Full Text PDFStudies conducted in real Space and in ground-based microgravity analog systems (MAS) have demonstrated changes in numerous lymphocyte functions. In this investigation we explored whether the observed functional changes in lymphocytes in MAS are associated with changes in gene expression. NASA-developed Rotating Wall Vessel (RWV) bioreactor was utilized as a MAS.
View Article and Find Full Text PDFIn vitro cell culture models used to study how Salmonella initiates disease at the intestinal epithelium would benefit from the recognition that organs and tissues function in a three-dimensional (3-D) environment and that this spatial context is necessary for development of cultures that more realistically resemble in vivo tissues/organs. Our aim was to establish and characterize biologically meaningful 3-D models of human colonic epithelium and apply them to study the early stages of enteric salmonellosis. The human colonic cell line HT-29 was cultured in 3-D and characterized by immunohistochemistry, histology, and scanning electron microscopy.
View Article and Find Full Text PDFSpace travel induces many deleterious effects on the flight crew due to the '0' g environment. The brain experiences a tremendous fluid shift, which is responsible for many of the detrimental changes in physical behavior seen in astronauts. It therefore indicates that the brain may undergo major changes in its protein levels in a '0' g environment to counteract the stress.
View Article and Find Full Text PDFThe activation of the US Laboratory Module "Destiny" on the International Space Station (ISS) in February 2001 launched a new era in microgravity research. Destiny provides the environment to conduct long-term microgravity research utilizing human intervention to assess, report, and modify experiments real time. As the only available pressurized space platform, ISS maximizes today's scientific resources and substantially increases the opportunity to obtain much longed-for answers on the effects of microgravity and long-term exposure to space.
View Article and Find Full Text PDFMicrogravity and stress of spaceflights result in immune dysfunction. The role of nutrition, especially nucleotide supplementation, has become an area of intensive research and significant interest in immunomodulation for maintenance of cellular immune responses. The studies presented here evaluate the plausibility of administering nucleotides to obviate immune dysfunction in an Earth-based in vivo analog of microgravity as studied in anti-orthostatic tail suspension (AOS) of mice.
View Article and Find Full Text PDFIn Vitro Cell Dev Biol Anim
February 2002
Inflammatory adherence to, and locomotion through the interstitium is an important component of the immune response. Conditions such as microgravity and modeled microgravity (MMG) severely inhibit lymphocyte locomotion in vitro through gelled type I collagen. We used the NASA rotating wall vessel bioreactor or slow-turning lateral vessel as a prototype for MMG in ground-based experiments.
View Article and Find Full Text PDF