N-acylethanolamines (NAEs) are bioactive lipids derived from the hydrolysis of the membrane phospholipid N-acylphosphatidylethanolamine (NAPE). In animal systems this reaction is part of the "endocannabinoid" signaling pathway, which regulates a variety of physiological processes. The signaling function of NAE is terminated by fatty acid amide hydrolase (FAAH), which hydrolyzes NAE to ethanolamine and free fatty acid.
View Article and Find Full Text PDFN-acylethanolamines (NAEs) are lipid metabolites derived from the hydrolysis of the membrane phospholipid N-acylphosphatidylethanolamine (NAPE). Recent work in Arabidopsis thaliana seedlings showed that combined treatments of NAE 12:0 and ABA inhibited seedling growth synergistically, suggesting low levels of NAE could potentiate the action of ABA. Here we examined the interplay between compound concentrations, growth inhibition and mutant genotypes with impaired sensitivities to these regulators.
View Article and Find Full Text PDFFluorescence resonance energy transfer-sensitized emission of the yellow cameleon 3.60 was used to study the dynamics of cytoplasmic calcium ([Ca(2+)](cyt)) in different zones of living Arabidopsis (Arabidopsis thaliana) roots. Transient elevations of [Ca(2+)](cyt) were observed in response to glutamic acid (Glu), ATP, and aluminum (Al(3+)).
View Article and Find Full Text PDFN-Acylethanolamines (NAEs) are bioactive acylamides that are present in a wide range of organisms. In plants, NAEs are generally elevated in desiccated seeds, suggesting that they may play a role in seed physiology. NAE and abscisic acid (ABA) levels were depleted during seed germination, and both metabolites inhibited the growth of Arabidopsis thaliana seedlings within a similar developmental window.
View Article and Find Full Text PDF