Publications by authors named "Neal C Goodwin"

Background/aim: The therapeutic potential of bromodomain and extra-terminal motif (BET) inhibitors in hematological cancers has been well established in preclinical and early-stage clinical trials, although as of yet, no BETtargeting agent has achieved approval. To add insight into potential response to mivebresib (ABBV-075), a broadspectrum BET inhibitor, co-clinical modeling of individual patient biopsies was conducted in the context of a Phase I trial in acute myeloid leukemia (AML).

Materials And Methods: Co-clinical modeling involves taking the patient's biopsy and implanting it in mice with limited passage so that it closely retains the original characteristics of the malignancy and allows comparisons of response between animal model and clinical data.

View Article and Find Full Text PDF

Dual bromodomain BET inhibitors that bind with similar affinities to the first and second bromodomains across BRD2, BRD3, BRD4, and BRDT have displayed modest activity as monotherapy in clinical trials. Thrombocytopenia, closely followed by symptoms characteristic of gastrointestinal toxicity, have presented as dose-limiting adverse events that may have prevented escalation to higher dose levels required for more robust efficacy. ABBV-744 is a highly selective inhibitor for the second bromodomain of the four BET family proteins.

View Article and Find Full Text PDF

Background: Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma in the pediatric cancer population. Survival among metastatic RMS patients has remained dismal yet unimproved for years. We previously identified the class I-specific histone deacetylase inhibitor, entinostat (ENT), as a pharmacological agent that transcriptionally suppresses the PAX3:FOXO1 tumor-initiating fusion gene found in alveolar rhabdomyosarcoma (aRMS), and we further investigated the mechanism by which ENT suppresses PAX3:FOXO1 oncogene and demonstrated the preclinical efficacy of ENT in RMS orthotopic allograft and patient-derived xenograft (PDX) models.

View Article and Find Full Text PDF

Rhabdomyosarcoma (RMS) is the most common soft tissue sarcoma of childhood with an unmet clinical need for decades. A single oncogenic fusion gene is associated with treatment resistance and a 40 to 45% decrease in overall survival. We previously showed that expression of this fusion oncogene in alveolar RMS (aRMS) mediates tolerance to chemotherapy and radiotherapy and that the class I-specific histone deacetylase (HDAC) inhibitor entinostat reduces PAX3:FOXO1 protein abundance.

View Article and Find Full Text PDF

Patient-derived tumor xenograft (PDX) mouse models have emerged as an important oncology research platform to study tumor evolution, mechanisms of drug response and resistance, and tailoring chemotherapeutic approaches for individual patients. The lack of robust standards for reporting on PDX models has hampered the ability of researchers to find relevant PDX models and associated data. Here we present the PDX models minimal information standard (PDX-MI) for reporting on the generation, quality assurance, and use of PDX models.

View Article and Find Full Text PDF

Targeting tumor-overexpressed EGFR with an antibody-drug conjugate (ADC) is an attractive therapeutic strategy; however, normal tissue expression represents a significant toxicity risk. The anti-EGFR antibody ABT-806 targets a unique tumor-specific epitope and exhibits minimal reactivity to EGFR in normal tissue, suggesting its suitability for the development of an ADC. We describe the binding properties and preclinical activity of ABT-414, an ABT-806 monomethyl auristatin F conjugate.

View Article and Find Full Text PDF

Embryonal rhabdomyosarcoma (eRMS) is one of the most common soft tissue sarcomas in children and adolescents. Parameningeal eRMS is a variant that is often more difficult to treat than eRMS occurring at other sites. A 14-year-old female with persistent headaches and rapid weight loss was diagnosed with parameningeal eRMS.

View Article and Find Full Text PDF

Despite clinical efficacy, current approved agents targeting EGFR are associated with on-target toxicities as a consequence of disrupting normal EGFR function. MAb 806 is a novel EGFR antibody that selectively targets a tumor-selective epitope suggesting that a mAb 806-based therapeutic would retain antitumor activity without the on-target toxicities associated with EGFR inhibition. To enable clinical development, a humanized variant of mAb 806 designated ABT-806 was generated and is currently in phase 1 trials.

View Article and Find Full Text PDF

PNT100 is a 24-base, chemically unmodified DNA oligonucleotide sequence that is complementary to a region upstream of the BCL-2 gene. Exposure of tumor cells to PNT100 results in suppression of proliferation and cell death by a process called DNA interference. PNT2258 is PNT100 that is encapsulated in protective amphoteric liposomes developed to efficiently encapsulate the PNT100 oligonucleotide, provide enhanced serum stability, optimized pharmacokinetic properties and antitumor activity of the nanoparticle both in vivo and in vitro.

View Article and Find Full Text PDF
Article Synopsis
  • The study evaluated the safety and effectiveness of thoracic surgical biopsies in patients with advanced non-small cell lung cancer (NSCLC) to improve molecular testing for personalized therapy.
  • A total of 25 patients underwent various surgical biopsy procedures, identifying potential targetable molecular information in 76% of cases and changing treatment strategies for 56% of patients.
  • The findings indicate that with careful patient selection, thoracic surgical biopsy can enhance personalized treatment options and facilitate enrollment in clinical trials for advanced NSCLC patients.
View Article and Find Full Text PDF