Plant biomass is a fundamental ecosystem attribute that is sensitive to rapid climatic changes occurring in the Arctic. Nevertheless, measuring plant biomass in the Arctic is logistically challenging and resource intensive. Lack of accessible field data hinders efforts to understand the amount, composition, distribution, and changes in plant biomass in these northern ecosystems.
View Article and Find Full Text PDFWe conducted an inverse modeling analysis, using a variety of data streams (tower-based eddy covariance measurements of net ecosystem exchange, NEE, of CO2, chamber-based measurements of soil respiration, and ancillary ecological measurements of leaf area index, litterfall, and woody biomass increment) to estimate parameters and initial carbon (C) stocks of a simple forest C-cycle model, DALEC, using Monte Carlo procedures. Our study site is the spruce-dominated Howland Forest AmeriFlux site, in central Maine, USA. Our analysis focuses on: (1) full characterization of data uncertainties, and treatment of these uncertainties in the parameter estimation; (2) evaluation of how combinations of different data streams influence posterior parameter distributions and model uncertainties; and (3) comparison of model performance (in terms of both predicted fluxes and pool dynamics) during a 4-year calibration period (1997-2000) and a 4-year validation period ("forward run", 2001-2004).
View Article and Find Full Text PDFIn N-limited ecosystems, fertilization by N deposition may enhance plant growth and thus impact C sequestration. In many N deposition-C sequestration experiments, N is added directly to the soil, bypassing canopy processes and potentially favoring N immobilization by the soil. To understand the impact of enhanced N deposition on a low fertility unmanaged forest and better emulate natural N deposition processes, we added 18 kg N ha(-1) year(-1) as dissolved NH(4)NO(3) directly to the canopy of 21 ha of spruce-hemlock forest.
View Article and Find Full Text PDFThis review summarizes the restenotic process that occurs after the implantation of bare metal coronary stents. The pathology of in-stent restenosis is distinct from that seen after balloon angioplasty and is characterized by neointimal proliferation and extracellular matrix deposition. The degree of neointimal proliferation is proportional to the amount of injury, the intensity of the inflammatory infiltrate and the association of stent struts with lipid-filled plaque.
View Article and Find Full Text PDFResponses of photosynthesis to carbon dioxide (CO2) partial pressure and irradiance were measured on leaves of 39-year-old trees of manuka (Leptospermum scoparium J. R. Forst.
View Article and Find Full Text PDFThe feedback between plant litterfall and nutrient cycling processes plays a major role in the regulation of nutrient availability and net primary production in terrestrial ecosystems. While several studies have examined site-specific feedbacks between litter chemistry and nitrogen (N) availability, little is known about the interaction between climate, litter chemistry, and N availability across different ecosystems. We assembled data from several studies spanning a wide range of vegetation, soils, and climatic regimes to examine the relationship between aboveground litter chemistry and annual net N mineralization.
View Article and Find Full Text PDF