Cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells contribute to the body's immune defenses. Current chimeric antigen receptor (CAR)-modified T cell immunotherapy shows strong promise for treating various cancers and infectious diseases. Although CAR-modified NK cell immunotherapy is rapidly gaining attention, its clinical applications are mainly focused on preclinical investigations using the NK92 cell line.
View Article and Find Full Text PDFDirect delivery of aerosolized vaccines to the respiratory mucosa elicits both systemic and mucosal responses. This vaccine strategy has not been tested for Ebola virus (EBOV) or other hemorrhagic fever viruses. Here, we examined the immunogenicity and protective efficacy of an aerosolized human parainfluenza virus type 3-vectored vaccine that expresses the glycoprotein (GP) of EBOV (HPIV3/EboGP) delivered to the respiratory tract.
View Article and Find Full Text PDFUnlabelled: Ebola virus (EBOV) causes a severe hemorrhagic fever with a deficient immune response, lymphopenia, and lymphocyte apoptosis. Dendritic cells (DC), which trigger the adaptive response, do not mature despite EBOV infection. We recently demonstrated that DC maturation is unblocked by disabling the innate response antagonizing domains (IRADs) in EBOV VP35 and VP24 by the mutations R312A and K142A, respectively.
View Article and Find Full Text PDFEbola virus (EBOV) infections are characterized by deficient T lymphocyte responses, T lymphocyte apoptosis, and lymphopenia in the absence of direct infection of T lymphocytes. In contrast, dendritic cells (DC) are infected but fail to mature appropriately, thereby impairing the T cell response. We investigated the contributions of EBOV proteins in modulating DC maturation by generating recombinant viruses expressing enhanced green fluorescent protein and carrying mutations affecting several potentially immunomodulating domains.
View Article and Find Full Text PDFThis paper reports on an assessment of community preparedness for HIV vaccine trials in the Democratic Republic of Congo. Formative research was conducted in the capital city of Kinshasa during the period October 2003 to March 2004 to answer questions pertinent to planning trials of a preventive HIV vaccine and to identify related issues. Twenty-seven in-depth interviews and two focus groups were held with potential trial participants and community leaders.
View Article and Find Full Text PDFAs the HIV-1 pandemic becomes increasingly complex, the genetic characterization of HIV strains bears important implications for vaccine research. To better understand the molecular evolution of HIV-1 viral diversity, we performed a comparative molecular analysis of HIV strains collected from high-risk persons in Kinshasa, Democratic Republic of Congo (DRC). Analysis of the gag-p24, env-C2V3 and -gp41 regions from 83 specimens collected in 1999-2000 revealed that 44 (53%) had concordant subtypes in the three regions (14 subsubtype A1, 10 subtype G, 8 subtype D, 5 subtype C, 2 each subsubtype F1 and CRF01_AE, and one each of subtypes H and J, and subsubtype A2, while the remaining 39 (47%) had mosaic genomes comprising multiple subtype combinations.
View Article and Find Full Text PDF