Publications by authors named "Ndjido Ardo Kane"

Article Synopsis
  • Pearl millet is highly resilient to heat and drought, making it a key food source in the sub-Saharan Sahel region where its root traits help with establishment in tough conditions.
  • Research shows that the plant's fast-growing primary root is crucial for early drought tolerance, which is vital for agricultural success in the Sahel.
  • Genetic studies identified a specific glutaredoxin gene linked to root growth and stress resilience, indicating that this gene plays a significant role in helping pearl millet adapt to its harsh environment.
View Article and Find Full Text PDF

Pearl millet is among the top three-cereal production in one of the most climate vulnerable regions, sub-Saharan Africa. Its Sahelian origin makes it adapted to grow in poor sandy soils under low soil water regimes. Pearl millet is thus considered today as one of the most interesting crops to face the global warming.

View Article and Find Full Text PDF

Water deficit stress at the early stage of development is one of the main factors limiting pearl millet production. One practice to counteract this limitation would be to resort to the application of hormones to stimulate plant growth and development at critical stages. Exogenous methyl jasmonate (MeJA) can improve drought tolerance by modulating signaling, metabolism, and photosynthesis pathways, therefore, we assumed that can occur in pearl millet during the early stage of development.

View Article and Find Full Text PDF

Severe price spikes of the major grain commodities and rapid expansion of cultivated area in the past two decades are symptoms of a severely stressed global food supply. Scientific discovery and improved agricultural productivity are needed and are enabled by unencumbered access to, and use of, genetic sequence data. In the same way the world witnessed rapid development of vaccines for COVID-19, genetic sequence data afford enormous opportunities to improve crop production.

View Article and Find Full Text PDF

A deep understanding of the genetic control of drought tolerance and iron deficiency tolerance is essential to hasten the process of developing improved varieties with higher tolerance through genomics-assisted breeding. In this context, an improved genetic map with 1205 loci was developed spanning 2598.3 cM with an average 2.

View Article and Find Full Text PDF

Background: Pearl millet, a nutritious food for around 100 million people in Africa and India, displays extensive genetic diversity and a high degree of admixture with wild relatives. Two major morphotypes can be distinguished in Senegal: early-flowering Souna and late-flowering Sanio. Phenotypic variabilities related to flowering time play an important role in the adaptation of pearl millet to climate variability.

View Article and Find Full Text PDF

Climate change is already affecting agro-ecosystems and threatening food security by reducing crop productivity and increasing harvest uncertainty. Mobilizing crop diversity could be an efficient way to mitigate its impact. We test this hypothesis in pearl millet, a nutritious staple cereal cultivated in arid and low-fertility soils in sub-Saharan Africa.

View Article and Find Full Text PDF

Background: Genetic improvement of pearl millet is lagging behind most of the major crops. Development of genomic resources is expected to expedite breeding for improved agronomic traits, stress tolerance, yield, and nutritional quality. Genotyping a breeding population with high throughput markers enables exploration of genetic diversity, population structure, and linkage disequilibrium (LD) which are important preludes for marker-trait association studies and application of genomic-assisted breeding.

View Article and Find Full Text PDF

Global environmental changes strongly impact wild and domesticated species biology and their associated ecosystem services. For crops, global warming has led to significant changes in terms of phenology and/or yield. To respond to the agricultural challenges of this century, there is a strong need for harnessing the genetic variability of crops and adapting them to new conditions.

View Article and Find Full Text PDF

Pearl millet plays a major role in food security in arid and semi-arid areas of Africa and India. However, it lags behind the other cereal crops in terms of genetic improvement. The recent sequencing of its genome opens the way to the use of modern genomic tools for breeding.

View Article and Find Full Text PDF
Article Synopsis
  • Pearl millet is a critical food source for over 90 million farmers in dry regions of sub-Saharan Africa, India, and South Asia.
  • Researchers have sequenced the whole genome of a reference genotype, revealing approximately 38,579 genes and a focus on genes related to wax biosynthesis, which may enhance the crop's heat and drought resistance.
  • The study also involved resequencing 994 pearl millet lines to explore genetic diversity and domestication, aiming to support genomic selection and hybrid performance prediction for better breeding outcomes.
View Article and Find Full Text PDF

Root exudation contributes to soil carbon allocation and also to microbial C and energy supply, which subsequently impacts soil aggregation around roots. Biologically-driven soil structural formation is an important driver of soil fertility. Plant genetic determinants of exudation and more generally of factors promoting rhizosphere soil aggregation are largely unknown.

View Article and Find Full Text PDF
Article Synopsis
  • Cytosine DNA methylation is an epigenetic mechanism in plants that alters gene expression in response to environmental stressors and salicylic acid (SA).
  • In a study with four pearl millet varieties, SA treatment was shown to decrease DNA methylation levels and inhibit root growth, with the extent of these effects varying based on the genotype and SA concentration.
  • The research indicates that SA impacts both the methylation process and root growth by modulating specific genes, suggesting that pearl millet prioritizes defense mechanisms over vegetative growth during stress conditions.
View Article and Find Full Text PDF

Sub-Saharan agriculture has been identified as vulnerable to ongoing climate change. Adaptation of agriculture has been suggested as a way to maintain productivity. Better knowledge of intra-specific diversity of varieties is prerequisites for the successful management of such adaptation.

View Article and Find Full Text PDF

In wheat, VRN1/TaVRN1 and VRN2/TaVRN2 determine the growth habit and flowering time. In addition, the MADS box transcription factor VEGETATIVE TO REPRODUCTIVE TRANSITION 2 (TaVRT2) is also associated with the vernalization response in a manner similar to TaVRN2. However, the molecular relationship between these three genes and their products is unknown.

View Article and Find Full Text PDF