Publications by authors named "Ndieyira J"

The correlation between circulating microbes and sepsis as well as proinflammatory diseases is increasingly gaining recognition. However, the detection of microbes' cell-free DNA (cfDNA), which exist at concentrations of a billion times lower than blood proteins, poses a significant challenge for early disease detection. Here, we present Nano mechanics combined with highly sensitive readout sequences to address the challenges of ultralow counts of disease biomarkers, thus enabling robust quantitative monitoring of chronic medical conditions at different stages of human disease progression.

View Article and Find Full Text PDF

Background: For more than 60 years, the synthetic opioid fentanyl has been widely used in anaesthesia and analgesia. While the intravenous formulation is primarily used for general anaesthesia and intensive care settings, the drug's high lipophilic properties also allow various noninvasive routes of administration. Published data suggest that intranasal administration is also attractive for use as intranasal patient-controlled analgesia (PCA).

View Article and Find Full Text PDF

Mechanical signaling involved in molecular interactions lies at the heart of materials science and biological systems, but the mechanisms involved are poorly understood. Here we use nanomechanical sensors and intact human cells to provide unique insights into the signaling pathways of connectivity networks, which deliver the ability to probe cells to produce biologically relevant, quantifiable and reproducible signals. We quantify the mechanical signals from malignant cancer cells, with 10 cells per ml in 1000-fold excess of non-neoplastic human epithelial cells.

View Article and Find Full Text PDF

The alarming increase of pathogenic bacteria that are resistant to multiple antibiotics is now recognized as a major health issue fuelling demand for new drugs. Bacterial resistance is often caused by molecular changes at the bacterial surface, which alter the nature of specific drug-target interactions. Here, we identify a novel mechanism by which drug-target interactions in resistant bacteria can be enhanced.

View Article and Find Full Text PDF

We explore and exploit diffraction effects that have been previously neglected when modelling optical measurement techniques for the bending of micro-mechanical transducers such as cantilevers for atomic force microscopy. The illumination of a cantilever edge causes an asymmetric diffraction pattern at the photo-detector affecting the calibration of the measured signal in the popular optical beam deflection technique (OBDT). The conditions that avoid such detection artefacts conflict with the use of smaller cantilevers.

View Article and Find Full Text PDF

Cantilever arrays have been used to monitor biochemical interactions and their associated stress. However, it is often necessary to passivate the underside of the cantilever to prevent unwanted ligand adsorption, and this process requires tedious optimization. Here, we show a way to immobilize membrane receptors on nanomechanical cantilevers so that they can function without passivating the underlying surface.

View Article and Find Full Text PDF

There is a growing appreciation that mechanical signals can be as important as chemical and electrical signals in biology. To include such signals in a systems biology description for understanding pathobiology and developing therapies, quantitative experiments on how solution-phase and surface chemistry together produce biologically relevant mechanical signals are needed. Because of the appearance of drug-resistant hospital 'superbugs', there is currently great interest in the destruction of bacteria by bound drug-target complexes that stress bacterial cell membranes.

View Article and Find Full Text PDF

The cantilever sensor, which acts as a transducer of reactions between model bacterial cell wall matrix immobilized on its surface and antibiotic drugs in solution, has shown considerable potential in biochemical sensing applications with unprecedented sensitivity and specificity. The drug-target interactions generate surface stress, causing the cantilever to bend, and the signal can be analyzed optically when it is illuminated by a laser. The change in surface stress measured with nano-scale precision allows disruptions of the biomechanics of model bacterial cell wall targets to be tracked in real time.

View Article and Find Full Text PDF

Biologically inspired cantilever systems which transform biochemical reactions into nanomechanical motion have attracted attention for label-free biosensing and nanorobotic applications. Here, we take advantage of chemically programmable proton-driven reactions to actuate both the direction and amplitude of nanomechanical cantilever motion in aqueous environments, corresponding to femto-Newton single molecule surface stress. By altering the end groups of self-assembled coatings, we deconvolute the dominant role of surface charge over hydrophilic/hydrophobic interactions and attribute reference cantilever signals to the silicon underside of the cantilever.

View Article and Find Full Text PDF

The alarming growth of the antibiotic-resistant superbugs methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus (VRE) is driving the development of new technologies to investigate antibiotics and their modes of action. We report the label-free detection of vancomycin binding to bacterial cell wall precursor analogues (mucopeptides) on cantilever arrays, with 10 nM sensitivity and at clinically relevant concentrations in blood serum. Differential measurements have quantified binding constants for vancomycin-sensitive and vancomycin-resistant mucopeptide analogues.

View Article and Find Full Text PDF