Publications by authors named "Nazzareno Diodato"

Hydrological disasters, such as floods, can have dire consequences for human societies. Historical information plays a key role in detecting whether particular types of hydrological disasters have increased in frequency and/or magnitude and, if so, they are more likely attributable to natural or human-induced climatic and other environmental changes. The identification of regions with similar flood conditions is essential for the analysis of regional flooding regimes.

View Article and Find Full Text PDF

Background: Advances in climate change research contribute to improved forecasts of hydrological extremes with potentially severe impacts on human societies and natural landscapes. Rainfall erosivity density (RED), i.e.

View Article and Find Full Text PDF

Background: Rainfall and other climatic agents are the main triggers of soil erosion in the Mediterranean region, where they have the potential to increase discharge and sediment transport and cause long-term changes in the river system. For the Magra River Basin (MRB), located in the upper Tyrrhenian coast of Italy, we estimated changes in net erosion as a function of the geographical characteristics of the basin, the seasonal distribution of precipitation, and the vegetation cover.

Methods And Findings: Based on rainfall erosivity and surface flow and transport sub-models, we developed a simplified model to assess basin-wide sediment yields on a monthly basis by upscaling the point rainfall input.

View Article and Find Full Text PDF

Rainfall erosivity drives damaging hydrological events with significant environmental and socio-economic impacts. This study presents the world's hitherto longest time-series of annual rainfall erosivity (725-2019 CE), one from the Tiber River Basin (TRB), a fluvial valley in central Italy in which the city of Rome is located. A historical perspective of erosive floods in the TRB is provided employing a rainfall erosivity model based on documentary data, calibrated against a sample (1923-1964) of actual measurement data.

View Article and Find Full Text PDF

Soil erosion can present a major threat to agriculture due to loss of soil, nutrients, and organic carbon. Therefore, soil erosion modelling is one of the steps used to plan suitable soil protection measures and detect erosion hotspots. A bibliometric analysis of this topic can reveal research patterns and soil erosion modelling characteristics that can help identify steps needed to enhance the research conducted in this field.

View Article and Find Full Text PDF
Article Synopsis
  • The study reviewed soil erosion prediction models from peer-reviewed literature published between 1994 and 2017, aiming to identify key processes, application regions, and gaps in research.
  • A collaborative effort involving 67 soil-erosion scientists led to the creation of the 'Global Applications of Soil Erosion Modelling Tracker (GASEMT)', which compiled 3030 modeling records from 126 countries, covering all continents except Antarctica.
  • The GASEMT database is open-source, designed to support future soil erosion research and the United Nations' global soil erosion assessment, allowing for community contributions and enhancements.
View Article and Find Full Text PDF

Rainfall erosivity and its derivative, erosivity density (ED, i.e., the erosivity per unit of rain), is a main driver of considerable environmental damages and economic losses worldwide.

View Article and Find Full Text PDF

Damaging hydrological events are extreme phenomena with potentially severe impacts on human societies. Here, we present the hitherto longest reconstruction of damaging hydrological events for Italy, and for the whole Mediterranean region, revealing 674 such events over the period 800-2017. For any given year, we established a severity index based on information in historical documentary records, facilitating the transformation of the data into a continuous time-series.

View Article and Find Full Text PDF
Article Synopsis
  • * A new Global Rainfall Erosivity Database was created through extensive data collection from 3,625 stations across 63 countries, allowing for the development of a global erosivity map.
  • * The study found that the average rainfall erosivity is 2,190 MJ mm ha h yr, with the highest values in tropical regions and the lowest in colder areas like Canada and Northern Europe.
View Article and Find Full Text PDF

Rainfall erosivity as a dynamic factor of soil loss by water erosion is modelled intra-annually for the first time at European scale. The development of Rainfall Erosivity Database at European Scale (REDES) and its 2015 update with the extension to monthly component allowed to develop monthly and seasonal R-factor maps and assess rainfall erosivity both spatially and temporally. During winter months, significant rainfall erosivity is present only in part of the Mediterranean countries.

View Article and Find Full Text PDF

The boreal forest of the northern hemisphere represents one of the world's largest ecozones and contains nearly one third of the world's intact forests and terrestrially stored carbon. Long-term variations in temperature and precipitation have been implied in altering carbon cycling in forest soils, including increased fluxes to receiving waters. In this study, we use a simple hydrologic model and a 40-year dataset (1971-2010) of dissolved organic carbon (DOC) from two pristine boreal lakes (ELA, Canada) to examine the interactions between precipitation and landscape-scale controls of DOC production and export from forest catchments to surface waters.

View Article and Find Full Text PDF

This study was prompted by the occurrence of an extreme Damaging geo-Hydrological Event (DHE) which occurred on October 25th 2011 and which affected a wide area of the northern Mediterranean region. After analysing the storm by means of the precipitation time series, the study attempts to relate the October 25th 2011 DHE with a series of other DHEs that occurred in the period 1954-2012, assessed via the use of historical data and classified according to severity, with a Storm Erosivity Indicator (Ra). The annual mean of the Ra value (2582 MJ mm ha(-1) h(-1) y(-1)) confirmed that the study area is one of the European regions with the highest rainfall erosivity level.

View Article and Find Full Text PDF

This work presents a modelling study where monthly-based climate data are used to estimate the Normalized Difference Vegetation Index (NDVI). The latter is a measure of vegetation greenness, usually derived from satellite-driven information. A model was developed to link NDVI data to rainfall and temperature measures.

View Article and Find Full Text PDF

This paper presents an environmental hazard assessment to account the impacts of single rainstorm variability on river-torrential landscape identified as potentially vulnerable mainly to erosional soil degradation processes. An algorithm for the characterisation of this impact, called Erosive Hazard Index (EHI), is developed with a less expensive methodology. In EHI modelling, we assume that the river-torrential system has adapted to the natural hydrological regime, and a sudden fluctuation in this regime, especially those exceeding thresholds for an acceptable range of flexibility, may have disastrous consequences for the mountain environment.

View Article and Find Full Text PDF