Publications by authors named "Nazreen Hadjirin"

Article Synopsis
  • The rise in livestock production is expected to lead to the emergence of new pathogens that can affect both animal and human health.
  • Researchers studied the respiratory microbiota of pigs, focusing on a specific pathogen that is prevalent in pig farming and can also infect humans.
  • The findings indicate that certain pathogenic strains developed during the expansion of pig farming in the 19th and 20th centuries, spreading globally through the trade of live pigs and adapting over time to become more pathogenic.
View Article and Find Full Text PDF

The spread of carbapenemase-producing (CPE) is of major public health concern. The transmission dynamics of CPE in hospitals, particularly at the national level, are not well understood. Here, we describe a retrospective nationwide genomic surveillance study of CPE in Ireland between 2012 and 2017.

View Article and Find Full Text PDF

Shotgun metagenomics is a powerful tool to identify antimicrobial resistance (AMR) genes in microbiomes but has the limitation that extrachromosomal DNA, such as plasmids, cannot be linked with the host bacterial chromosome. Here we present a comprehensive laboratory and bioinformatics pipeline HAM-ART (Hi-C Assisted Metagenomics for Antimicrobial Resistance Tracking) optimised for the generation of metagenome-assembled genomes including both chromosomal and extrachromosomal AMR genes. We demonstrate the performance of the pipeline in a study comparing 100 pig faecal microbiomes from low- and high-antimicrobial use pig farms (organic and conventional farms).

View Article and Find Full Text PDF
Article Synopsis
  • The discovery of antibiotics has greatly improved health, but antibiotic resistance, especially in human pathogens, is often linked to their clinical use and has historical roots.
  • Research shows that methicillin-resistant Staphylococcus aureus existed in European hedgehogs before antibiotics, indicating it adapted to survive in this environment.
  • The study highlights the importance of a One Health approach, connecting human, animal, and environmental health, to better understand and combat the growing threat of antibiotic resistance.
View Article and Find Full Text PDF

Mutation rates vary both within and between bacterial species, and understanding what drives this variation is essential for understanding the evolutionary dynamics of bacterial populations. In this study, we investigate two factors that are predicted to influence the mutation rate: ecology and genome size. We conducted mutation accumulation experiments on eight strains of the emerging zoonotic pathogen Streptococcus suis.

View Article and Find Full Text PDF

Background: Antimicrobial resistance (AMR) is among the gravest threats to human health and food security worldwide. The use of antimicrobials in livestock production can lead to emergence of AMR, which can have direct effects on humans through spread of zoonotic disease. Pigs pose a particular risk as they are a source of zoonotic diseases and receive more antimicrobials than most other livestock.

View Article and Find Full Text PDF

Methicillin-resistant (MRSA) sequence type (ST)398 is a livestock associated (LA) lineage with zoonotic potential, especially in humans with live pig contact. The objective of this study was to characterize two strains of lineage ST398 (one methicillin-resistant (MRSA), one methicillin-susceptible (MSSA)) isolated from the same nasal sample of a patient admitted in the Intensive-Care Unit of a Spanish Hospital, and with previous occupational exposure to live pigs, by whole-genome-sequencing (WGS). The sample was obtained during routine surveillance for MRSA colonization.

View Article and Find Full Text PDF

Objective: Epidemic methicillin-resistant Staphylococcus aureus (MRSA) clones have been described in Ghana, but so far, no typical livestock-associated MRSA isolates (CC398) have been found. In this study we provide baseline information on antimicrobial resistance, population structure, and virulence gene content of S. aureus isolates from livestock and farm attendants.

View Article and Find Full Text PDF

A number of veterinary clinical pathology laboratories in New Zealand have been reporting emergence of increased minimum in inhibitory concentrations for β-lactams in the common clinical bovine mastitis pathogen Streptococcus uberis. The objective of this study was to determine the genetic basis of this increase in MIC for β-lactams amongst S. uberis.

View Article and Find Full Text PDF

Background: Klebsiella pneumoniae is a human, animal, and environmental commensal and a leading cause of nosocomial infections, which are often caused by multiresistant strains. We evaluate putative sources of K. pneumoniae that are carried by and infect hospital patients.

View Article and Find Full Text PDF

Objectives: High-level β-lactam resistance in MRSA is mediated in the majority of strains by a mecA or mecC gene. In this study, we identified 10 mec gene-negative MRSA human isolates from Austria and 11 bovine isolates from the UK showing high levels of β-lactam resistance and sought to understand the molecular basis of the resistance observed.

Methods: Different antimicrobial resistance testing methods (disc diffusion, Etest and VITEK® 2) were used to establish the β-lactam resistance profiles for the isolates and the isolates were further investigated by WGS.

View Article and Find Full Text PDF

Livestock have been proposed as a reservoir for drug-resistant that infect humans. We isolated and sequenced 431 isolates (including 155 extended-spectrum β-lactamase [ESBL]-producing isolates) from cross-sectional surveys of livestock farms and retail meat in the East of England. These were compared with the genomes of 1,517 bacteria associated with bloodstream infection in the United Kingdom.

View Article and Find Full Text PDF

Vancomycin-resistant (VREfm) is a major cause of nosocomial infection and is categorized as high priority by the World Health Organization global priority list of antibiotic-resistant bacteria. In the past, livestock have been proposed as a putative reservoir for drug-resistant strains that infect humans, and isolates of the same lineage have been found in both reservoirs. We undertook cross-sectional surveys to isolate (including VREfm) from livestock farms, retail meat, and wastewater treatment plants in the United Kingdom.

View Article and Find Full Text PDF

Here we describe a new species of the genus Streptococcus that was isolated from a dairy cow with mastitis in New Zealand. Strain NZ1587 was Gram-positive, coccus-shaped and arranged as chains, catalase and coagulase negative, γ-haemolytic and negative for Lancefield carbohydrates (A-D, F and G). The 16S rRNA sequence did not match sequences in the NCBI 16S rRNA or GreenGenes databases.

View Article and Find Full Text PDF

Bicomponent pore-forming leukocidins are a family of potent toxins secreted by Staphylococcus aureus, which target white blood cells preferentially and consist of an S- and an F-component. The S-component recognizes a receptor on the host cell, enabling high-affinity binding to the cell surface, after which the toxins form a pore that penetrates the cell lipid bilayer. Until now, six different leukocidins have been described, some of which are host and cell specific.

View Article and Find Full Text PDF

We compared ChromID VRE and Brilliance VRE media for the detection of vancomycin-resistant enterococci (VRE). Using a panel of 28 enterococcal isolates, 10 vanA Enterococcus faecium and three vanA Enterococcus faecalis isolates grew as per manufacturers' instructions whilst growth of two vanC and eight vancomycin-susceptible enterococci was inhibited on both media. Important differences were noted in the selectivity and chromogenic properties of the two media for vanA Enterococcus raffinosus and vanB E.

View Article and Find Full Text PDF

The DNA damage protein and transcription factor Atmin (Asciz) is required for both lung tubulogenesis and ciliogenesis. Like the lungs, kidneys contain a tubular network that is critical for their function and in addition, renal ciliary dysfunction has been implicated in the pathogenesis of cystic kidney disease. Using the Atmin mouse mutant Gasping6 (Gpg6), we investigated kidney development and found it severely disrupted with reduced branching morphogenesis, resulting in fewer epithelial structures being formed.

View Article and Find Full Text PDF