Publications by authors named "Nazmiye Celik"

Article Synopsis
  • - HITS-Bio is a new bioprinting system that allows for the rapid and efficient placement of multiple cell spheroids, achieving speeds ten times faster than current methods while maintaining high cell viability (>90%).
  • - It demonstrates significant applications, such as using microRNA-modified stem cell spheroids for nearly complete bone defect closure in rats after 3 to 6 weeks, showcasing its potential in regenerative medicine.
  • - The system also effectively fabricates large cartilage constructs with around 600 chondrogenic spheroids in under 40 minutes, emphasizing its scalability and efficiency for medical repairs.
View Article and Find Full Text PDF

Tissue biofabrication that replicates an organ-specific architecture and function requires physiologically-relevant cell densities. Bioprinting using spheroids has the potential to create constructs with native cell densities, but its application is limited due to the lack of practical, scalable techniques. This study presents HITS-Bio (High-throughput Integrated Tissue Fabrication System for Bioprinting), a novel multiarray spheroid bioprinting technology enabling scalable tissue fabrication by rapidly positioning a number of spheroids simultaneously using a digitally-controlled nozzle array (DCNA) platform.

View Article and Find Full Text PDF

Cell aggregates are widely used to study heterotypic cellular interactions during the development of vascularization . In this study, we examined heterotypic cellular spheroids made of adipose-derived stem cells and CD34/CD31 endothelial progenitor cells induced by the transfection of miR-148b mimic for induction of osteogenic differentiation and miR-210 mimic for induction of endotheliogenesis, respectively. The effect of the microRNA (miRs) mimic treatment group and induction time on codifferentiation was assessed in spheroids formed of transfected cells over the course of a 4-week culture.

View Article and Find Full Text PDF

Current nucleic acid delivery methods have not achieved efficient, non-toxic delivery of miRNAs with tumor-specific selectivity. In this study, a new delivery system based on light-inducible gold-silver-gold, core-shell-shell (CSS) nanoparticles is presented. This system delivers small nucleic acid therapeutics with precise spatiotemporal control, demonstrating the potential for achieving tumor-specific selectivity and efficient delivery of miRNA mimics.

View Article and Find Full Text PDF

Engineering functional tissues and organs remains a fundamental pursuit in bio-fabrication. However, the accurate constitution of complex shapes and internal anatomical features of specific organs, including their intricate blood vessels and nerves, remains a significant challenge. Inspired by the Matryoshka doll, here a new method called "Intra-Embedded Bioprinting (IEB)" is introduced building upon existing embedded bioprinting methods.

View Article and Find Full Text PDF

Engineering functional tissues and organs remains a fundamental pursuit in biofabrication. However, the accurate constitution of complex shapes and internal anatomical features of specific organs, including their intricate blood vessels and nerves, remains a significant challenge. Inspired by the Matryoshka doll, we here introduce a new method called 'Intra-Embedded Bioprinting (IEB),' building upon existing embedded bioprinting methods.

View Article and Find Full Text PDF

Gaucher disease (GD), the most prevalent lysosomal disorder, is caused bygene mutations, leading to deficiency of glucocerebrosidase, and accumulation of glycosphingolipids in cells of the mononuclear phagocyte system. While skeletal diseases are the leading cause of morbidity and reduced quality of life in GD, the pathophysiology of bone involvement is not yet fully understood, partly due to lack of relevant human model systems. In this work, we present the first 3D human model of GD using aspiration-assisted freeform bioprinting, which enables a platform tool with a potential for decoding the cellular basis of the developmental bone abnormalities in GD.

View Article and Find Full Text PDF

Despite substantial advancements in development of cancer treatments, lack of standardized and physiologically-relevant in vitro testing platforms limit the early screening of anticancer agents. A major barrier is the complex interplay between the tumor microenvironment and immune response. To tackle this, a dynamic-flow based 3D bioprinted multi-scale vascularized breast tumor model, responding to chemo and immunotherapeutics is developed.

View Article and Find Full Text PDF

Gene therapeutic applications combined with bio- and nano-materials have been used to address current shortcomings in bone tissue engineering due to their feasibility, safety and potential capability for clinical translation. Delivery of non-viral vectors can be altered using gene-activated matrices to improve their efficacy to repair bone defects.anddelivery strategies are the most used methods for bone therapy, which have never been directly compared for their potency to repair critical-sized bone defects.

View Article and Find Full Text PDF

The engineering of osteochondral interfaces remains a challenge. MicroRNAs (miRs) have emerged as significant tools to regulate the differentiation and proliferation of osteogenic and chondrogenic formation in the human musculoskeletal system. Here, we describe a novel approach to osteochondral reconstruction based on the three-dimensional (3D) bioprinting of miR-transfected adipose-derived stem cell (ADSC) spheroids to produce a heterotypic interface that addresses the intrinsic limitations of the traditional approach to inducing zonal differentiation via the use of diffusible cytokines.

View Article and Find Full Text PDF

Aspiration-assisted freeform bioprinting (AAfB) has emerged as a promising technique for precise placement of tissue spheroids in three-dimensional (3D) space enabling tissue fabrication. To achieve success in embedded bioprinting using AAfB, an ideal support bath should possess shear-thinning behavior and yield-stress to facilitate tight fusion and assembly of bioprinted spheroids forming tissues. Several studies have demonstrated support baths for embedded bioprinting in the past few years, yet a majority of these materials poses challenges due to their low biocompatibility, opaqueness, complex and prolonged preparation procedures, and limited spheroid fusion efficacy.

View Article and Find Full Text PDF

Objective: This study aimed to evaluate the impact of interprofessional in situ simulations on the technical and non-technical skills of pediatric burn teams in acute burn management.

Methods: This quasi-experimental study consisted of a one-group pre- and post-test design conducted in a pediatric burn center in Turkey. The sample consisted of nine interprofessional burn team members.

View Article and Find Full Text PDF

Engineered bone grafts require a vascular network to supply cells with oxygen, nutrients and remove waste. Using heterotypic mature cells to create these graftshas resulted in limited cell density, ectopic tissue formation and disorganized tissue. Despite evidence that progenitor cell aggregates, such as progenitor spheroids, are a potential candidate for fabrication of native-like pre-vascularized bone tissue, the factors dictating progenitor co-differentiation to create heterotypic pre-vascularized bone tissue remains poorly understood.

View Article and Find Full Text PDF

Bioprinting of cellular aggregates, such as tissue spheroids, to form three-dimensional (3D) complex-shaped arrangements, has posed a major challenge due to lack of robust, reproducible and practical bioprinting techniques. Here, we demonstrate 3D aspiration-assisted freeform bioprinting of tissue spheroids by precisely positioning them in self-healing yield-stress gels, enabling the self-assembly of spheroids for fabrication of tissues. The presented approach enables the traverse of spheroids directly from the cell media to the gel and freeform positioning of the spheroids on demand.

View Article and Find Full Text PDF