Publications by authors named "Nazmi Burak Budanur"

Viscous flows through pipes and channels are steady and ordered until, with increasing velocity, the laminar motion catastrophically breaks down and gives way to turbulence. How this apparently discontinuous change from low- to high-dimensional motion can be rationalized within the framework of the Navier-Stokes equations is not well understood. Exploiting geometrical properties of transitional channel flow we trace turbulence to far lower Reynolds numbers (Re) than previously possible and identify the complete path that reversibly links fully turbulent motion to an invariant solution.

View Article and Find Full Text PDF

We estimate the maximal Lyapunov exponent at different resolutions and Reynolds numbers in large eddy simulations (LES) and direct numerical simulations of sinusoidally driven Navier-Stokes equations in three dimensions. Independent of the Reynolds number when nondimensionalized by Kolmogorov units, the LES Lyapunov exponent diverges as an inverse power of the effective grid spacing showing that the fine scale structures exhibit much faster error growth rates than the larger ones. Effectively, i.

View Article and Find Full Text PDF

Theoretical foundations of chaos have been predominantly laid out for finite-dimensional dynamical systems, such as the three-body problem in classical mechanics and the Lorenz model in dissipative systems. In contrast, many real-world chaotic phenomena, e.g.

View Article and Find Full Text PDF

In Fall 2020, several European countries reported rapid increases in COVID-19 cases along with growing estimates of the effective reproduction rates. Such an acceleration in epidemic spread is usually attributed to time-dependent effects, e.g.

View Article and Find Full Text PDF

We show that turbulent dynamics that arise in simulations of the three-dimensional Navier-Stokes equations in a triply periodic domain under sinusoidal forcing can be described as transient visits to the neighborhoods of unstable time-periodic solutions. Based on this description, we reduce the original system with more than 10^{5} degrees of freedom to a 17-node Markov chain where each node corresponds to the neighborhood of a periodic orbit. The model accurately reproduces long-term averages of the system's observables as weighted sums over the periodic orbits.

View Article and Find Full Text PDF

High impact epidemics constitute one of the largest threats humanity is facing in the 21 century. In the absence of pharmaceutical interventions, physical distancing together with testing, contact tracing and quarantining are crucial in slowing down epidemic dynamics. Yet, here we show that if testing capacities are limited, containment may fail dramatically because such combined countermeasures drastically change the rules of the epidemic transition: Instead of continuous, the response to countermeasures becomes discontinuous.

View Article and Find Full Text PDF

We introduce "state space persistence analysis" for deducing the symbolic dynamics of time series data obtained from high-dimensional chaotic attractors. To this end, we adapt a topological data analysis technique known as persistent homology for the characterization of state space projections of chaotic trajectories and periodic orbits. By comparing the shapes along a chaotic trajectory to those of the periodic orbits, state space persistence analysis quantifies the shape similarity of chaotic trajectory segments and periodic orbits.

View Article and Find Full Text PDF

During bacterial cell division, the tubulin-homolog FtsZ forms a ring-like structure at the center of the cell. This Z-ring not only organizes the division machinery, but treadmilling of FtsZ filaments was also found to play a key role in distributing proteins at the division site. What regulates the architecture, dynamics and stability of the Z-ring is currently unknown, but FtsZ-associated proteins are known to play an important role.

View Article and Find Full Text PDF

We consider the motion of a droplet bouncing on a vibrating bath of the same fluid in the presence of a central potential. We formulate a rotation symmetry-reduced description of this system, which allows for the straightforward application of dynamical systems theory tools. As an illustration of the utility of the symmetry reduction, we apply it to a model of the pilot-wave system with a central harmonic force.

View Article and Find Full Text PDF

Dynamical systems with translational or rotational symmetry arise frequently in studies of spatially extended physical systems, such as Navier-Stokes flows on periodic domains. In these cases, it is natural to express the state of the fluid in terms of a Fourier series truncated to a finite number of modes. Here, we study a 4-dimensional model with chaotic dynamics and SO(2) symmetry similar to those that appear in fluid dynamics problems.

View Article and Find Full Text PDF

Spatially extended systems, such as channel or pipe flows, are often equivariant under continuous symmetry transformations, with each state of the flow having an infinite number of equivalent solutions obtained from it by a translation or a rotation. This multitude of equivalent solutions tends to obscure the dynamics of turbulence. Here we describe the "first Fourier mode slice," a very simple, easy to implement reduction of SO(2) symmetry.

View Article and Find Full Text PDF