Flame retardant composite hydrogels offer many advantages over conventional flame retardants, such as high water-retention capacity, enhanced fire resistance, and mechanical tunability. Herein, we developed flame-retardant dynamic covalent hydrogels using wood-derived cellulose nanocrystals (CNCs) crosslinked with boronate ester bonds, addressing environmental and health issues associated with the presence of non-biodegradable synthetic polymer and/or inorganic nanoparticle components in the existing systems. Our rheological investigation shows a liquid-to-soft-solid transition of CNC dispersions with tunable network elasticity ranging between ≈ 0.
View Article and Find Full Text PDF