Publications by authors named "Nazish Parveen"

Introduction: The efficiency of zinc oxide (ZnO) nanoparticles for environmental decontamination is limited by their reliance on ultraviolet (UV) light and rapid charge carrier recombination. Carbon doping has been proposed to address these challenges by potentially enhancing visible light absorption and charge separation.

Objectives: This study aims to introduce a novel, single-step synthesis method for carbon-doped ZnO (C-Z) nanoparticles, leveraging the decomposition of zinc nitrate hexahydrate and furfural under a nitrogen atmosphere to improve photocatalytic activity under visible light.

View Article and Find Full Text PDF

The polyacrylamide/gelatin-iron lanthanum oxide (P-G-ILO nanohybrid) was fabricated by the free radical grafting co-polymerization technique in the presence of N,N-methylenebisacrylamide (MBA) as cross linker and ammonium persulfate (APS) as initiator. The P-G-ILO nanohybrid was characterized by the various spectroscopic and microscopic techniques that provided the information regarding the crystalline behavior, surface area, and pore size. The response surface methodology was utilized for the statistical observation of diclofenac (DF) adsorption from the wastewater.

View Article and Find Full Text PDF

One of the most essential chemical processes that is utilized in the manufacturing of a great deal of contemporary goods is called heterogeneously catalyzed reactions, and it is also one of the most fascinating. Metallic nanostructures are heterogeneous catalysts for range reactions due to their huge surface area, large assembly of active surface sites, and quantum confinement effects. Unprotected metal nanoparticles suffer from irreversible agglomeration, catalyst poisoning, and limited life cycle.

View Article and Find Full Text PDF

The entire world is aware of the serious issue of global warming and therefore utilizing renewable energy sources is the most encouraging steps toward solving energy crises, and as a result, energy storage solutions are necessary. The supercapacitors (SCs) have a high-power density and a long cycle life, they are promising as an electrochemical conversion and storage device. In order to achieve high electrochemical performance, electrode fabrication must be implemented properly.

View Article and Find Full Text PDF

The development of nanomaterials with different shapes and sizes and which are utilized as effective materials for energy and environmental applications constitutes a challenge for researchers [...

View Article and Find Full Text PDF

Electrochemical supercapacitors as an energy storage device have become trademark in current electronic, medical and industrial applications, as they are sources of impressive power output. Supercapacitors supply fast power output, suitable to cover the energy demand of future electronic devices. Electrode material design is a subject of intense research in the area of energy development and advancement, due to its essential role in the electrochemical process of charge storage and the cost of capacitors.

View Article and Find Full Text PDF

The rapidly growing global problem of infectious pathogens acquiring resistance to conventional antibiotics is an instigating reason for researchers to continue the search for functional as well as broad-spectrum antimicrobials. Hence, we aimed in this study to synthesis silver-copper oxide (Ag-CuO) nanohybrids as a function of Ag concentration (0.05, 0.

View Article and Find Full Text PDF

Introduction: The energy industry has been challenged by the current high population and high energy consumption, forcing the development of effective and efficient supercapacitor devices. The crucial issues until now have been high production cost, deprived cyclic stability, and squat energy density. To resolve these problems, various approaches have been taken, such as the development of long-life electrode materials with high capacity, rapid charging, and slow discharging to overcome poor life cycle stability.

View Article and Find Full Text PDF

The fabrication of energy storage electrode materials with high specific capacitance and rapid charge-discharge capability has become an essential and major issue of concern in recent years. In the present work, sphere-shaped interconnected interlinked binder-free nickel sulfide (NiS) grown on the surface of a three-dimensional nickel foam (3DNF) was fabricated by a one-step solvothermal method under optimized synthesis conditions, including different solvents, amounts of sulfur, and experimental reaction times. The fabricated binder-free SS-NiS@3DNF-E electrodes were characterized by a range of spectroscopic and microscopic techniques and further evaluated for their comparative electrochemical supercapacitive performance in half-cell assembly cells.

View Article and Find Full Text PDF

The development of electrode materials plays a vital role in energy storage applications to save and store energy. In the present work, the synthesis of nanorod shaped MnO supported with amorphous carbon (MnO/AC) is reported by the microwave method for supercapacitor application. The as-prepared electrode material was then characterized using microscopic and spectroscopic techniques.

View Article and Find Full Text PDF

In this work, we demonstrate the microwave assisted solution combustion synthesis of aliovalent cation substituted ZnMLiO (M: Fe, Al, Cr) nanoparticles. The structural features, photoluminescence and photocatalytic properties were characterized by X-ray powder diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), and UV-visible and photoluminescence (PL) techniques. We have introduced aliovalent cations such as reducible Fe, stable Al and oxidisable Cr ions into ZnO and investigated its structural and optical properties.

View Article and Find Full Text PDF

In this work, silver (Ag) decorated reduced graphene oxide (rGO) coated with ultrafine CuO nanosheets (Ag-rGO@CuO) was prepared by the combination of a microwave-assisted hydrothermal route and a chemical methodology. The prepared Ag-rGO@CuO was characterized for its morphological features by field emission scanning electron microscopy and transmission electron microscopy while the structural characterization was performed by X-ray diffraction and Raman spectroscopy. Energy-dispersive X-ray analysis was undertaken to confirm the elemental composition.

View Article and Find Full Text PDF

The development of efficient materials for energy storage applications has attracted considerable attention, especially for supercapacitors and batteries that are the most promising and important power sources in everyday life. For this purpose, a suitable and efficient current collector must be determined and its behavior with respect to various solvents when it is used as an electrode material for energy storage applications should be understood. In this work, we studied the effect of washing three-dimensional nickel foam using different concentrations of hydrochloric acid and ethanol on the surface characteristics, electrochemical behavior, and storage performance of the foam.

View Article and Find Full Text PDF

Graphene and graphene-based hybrid materials have emerged as an outstanding supercapacitor electrode material primarily because of their excellent surface area, high electrical conductivity, and improved thermal, mechanical, electrochemical cycling stabilities. Graphene alone exhibits electric double layer capacitance (EDLC) with low energy density and high power density. The use of aerogels in a supercapacitor is a pragmatic approach due to its extraordinary properties like ultra-lightweight, high porosity and specific surface area.

View Article and Find Full Text PDF

This work demonstrated the development of conducting poly(chrysoidine G) (PCG)-gold nanoparticle (AuNP)-modified fluorine-doped tin oxide (F : SnO, FTO) film-coated glass electrodes for the sensitive electrochemical detection of nitrite (NO). The homogeneously distributed PCG nanoparticle layer was deposited onto the FTO electrode by cyclic voltammetry sweeping. AuNPs were then anchored onto the PCG/FTO electrode by the chemical reduction of pre-adsorbed Au ions.

View Article and Find Full Text PDF
Article Synopsis
  • * Researchers developed a sponge-like red phosphorus@graphene and NiP electrodes using a straightforward one-step method, achieving some of the highest performance metrics reported for these materials.
  • * An asymmetric solid-state supercapacitor was created with impressive energy and power densities, good stability, and the ability to power LEDs and fans, indicating strong potential for practical energy storage applications.
View Article and Find Full Text PDF

Layered Sn-based chalcogenides and heterostructures are widely used in batteries and photocatalysis, but its utilizations in a supercapacitor is limited by its structural instability and low conductivity. Here, SnS thin films are directly and conformally deposited on a three-dimensional (3D) Ni-foam (NF) substrate by atomic layer deposition (ALD), using tetrakis(dimethylamino)tin [TDMASn, ((CH)N)Sn] and HS that serves as an electrode for supercapacitor without any additional treatment. Two kinds of ALD-SnS films grown at 160 °C and 180 °C are investigated systematically by X-ray diffractometry, Raman spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM).

View Article and Find Full Text PDF

Interest in pseudocapacitive materials, especially cuprous oxide, has grown owing to its various advantageous properties and application as electrode materials in the energy storage devices. The work presented here, a cubic CuO framework was synthesized using a simple and one-step modified polyol-assisted (metal-organic framework) solvothermal method. The structural configuration was rationalized by systematically studying the effect of the reaction time on the morphology and growth of the CuO.

View Article and Find Full Text PDF

Background: Dengue is a rapidly emerging arthropod borne viral infection affecting tropical and sub-tropical regions of the world. Dengue is an acute febrile illness but sometimes causes more fatal complications like dengue haemorrhagic fever (DHF) and dengue shock syndrome (DSS). Delhi, the capital of India has become hyper endemic for dengue virus because all the four serotypes are circulating here.

View Article and Find Full Text PDF

SnS is an emerging candidate for an electrode material because of the considerable interlayer spaces in its crystal structures and the large surface area. SnS as a photocatalyst and in lithium ion batteries has been reported. On the other hand, there are only a few reports of their supercapacitor applications.

View Article and Find Full Text PDF

The development of manganese dioxide-based nanocomposites as materials for energy storage applications is advantageous because of its polymorphism behavior and structural flexibility. In this study, manganese dioxide (MnO) nanorod-intercalated reduced graphene oxide (rGO) nanocomposite was obtained through a simple hydrothermal method and their electrochemical supercapacitance was studied in a three electrode half-assembly electrochemical cell. The basic spectroscopic and diffraction data including Raman spectroscopy, scanning electron microscopy, and transmission electron microscopy were employed to characterize the resulting nanocomposite.

View Article and Find Full Text PDF

Three-dimensional (3D) nanostructures have attracted considerable attention because of their high surface areas and unique properties which gives outstanding performance in catalysis and energy storage applications. This paper proposes the growth mechanism of 3D flower-like β-Ni(OH)2 constructed through a two dimensional sheet framework using a one-step oleylamine-assisted solvothermal approach, where oleylamine acts as the surfactant, co-solvent, stabilizer, and reducing agent. A detailed examination of the product morphology after various reaction times suggested that the self-assembly of flower occurs through a mechanism involving nucleation, Ostwald ripening, and recrystallization.

View Article and Find Full Text PDF

Fibrous Pani-MnO2 nanocomposite were prepared using a one-step and scalable in situ chemical oxidative polymerization method. The formation, structural and morphological properties were investigated using a range of characterization techniques. The electrochemical capacitive behavior of the fibrous Pani-MnO2 nanocomposite was examined by cyclic voltammetry and galvanostatic charge-discharge measurements using a three-electrode experimental setup in an aqueous electrolyte.

View Article and Find Full Text PDF