Publications by authors named "Nazia Mehrban"

Macromolecule branching upon polyhedral oligomeric silsesquioxanes (POSS) "click" chemistry has previously been reported for promoting natural biological responses , particularly when regarding their demonstrated biocompatibility and structural robustness as potential macromolecule anchoring points. However, "clicking" of large molecules around POSS structures uncovers two main challenges: (1) a synthetic challenge encompassing multi-covalent attachment of macromolecules to a single nanoscale-central position, and (2) purification and separation of fully adorned nanocages from those that are incomplete due to their similar physical characteristics. Here we present peptide decoration to a TPOSS nanocage through the attachment of azido-modified trimers.

View Article and Find Full Text PDF

Airway respiratory epithelium forms a physical barrier through intercellular tight junctions, which prevents debris from passing through to the internal environment while ciliated epithelial cells expel particulate-trapping mucus up the airway. Polymeric solutions to loss of airway structure and integrity have been unable to fully restore functional epithelium. We hypothesised that plasma treatment of polymers would permit adsorption of α-helical peptides and that this would promote functional differentiation of airway epithelial cells.

View Article and Find Full Text PDF

Tissue engineering materials play a key role in how closely the complex architectural and functional characteristics of native healthy tissue can be replicated. Traditional natural and synthetic materials are superseded by bespoke materials that cross the boundary between these two categories. Here we present hydrogels that are derived from decellularised extracellular matrix and those that are synthesised from de novo α-helical peptides.

View Article and Find Full Text PDF

Cancer, disease and trauma to the larynx and their treatment can lead to permanent loss of structures critical to voice, breathing and swallowing. Engineered partial or total laryngeal replacements would need to match the ambitious specifications of replicating functionality, outer biocompatibility, and permissiveness for an inner mucosal lining. Here we present porous polyhedral oligomeric silsesquioxane-poly(carbonate urea) urethane (POSS-PCUU) as a potential scaffold for engineering laryngeal tissue.

View Article and Find Full Text PDF

Trauma to the central and peripheral nervous systems often lead to serious morbidity. Current surgical methods for repairing or replacing such damage have limitations. Tissue engineering offers a potential alternative.

View Article and Find Full Text PDF

α-Helical peptide hydrogels are decorated with a cell-binding peptide motif (RGDS), which is shown to promote adhesion, proliferation, and differentiation of PC12 cells. Gel structure and integrity are maintained after functionalization. This opens possibilities for the bottom-up design and engineering of complex functional scaffolds for 2D and 3D cell cultures.

View Article and Find Full Text PDF

This work investigates the effect of mammalian cell culture conditions on 3D printed calcium phosphate scaffolds. The purpose of the studies presented was to characterise the changes in scaffold properties in physiologically relevant conditions. Differences in crystal morphologies were observed between foetal bovine serum-supplemented media and their unsupplemented analogues, but not for supplemented media containing tenocytes.

View Article and Find Full Text PDF

Bone loss due to accidents or tissue diseases requires replacement of the structure by either autografts, allografts, or artificial materials. Reactive cements, which are based on calcium phosphate chemistry, are commonly used in nonload bearing areas such as the craniofacial region. Some of these materials are resorbed by the host under physiological conditions and replaced by bone.

View Article and Find Full Text PDF