Antimicrob Agents Chemother
September 2018
The substrate potentials of antituberculosis drugs on solute carrier (SLC) transporters are not well characterized to date, despite a well-established understanding of their drug dispositions and pharmacokinetics. In this study, we investigated comprehensively the substrate potentials of the 22 currently available antituberculosis drugs for SLC family transporter-mediated uptake, using oocytes and stably transfected HEK-293 cells The result suggested that ethambutol, isoniazid, amoxicillin, and prothionamide act as novel substrates for the SLC transporters. In addition, in the presence of representative transporter inhibitors, the uptake of the antituberculosis drugs was markedly decreased compared with the uptake in the absence of inhibitor, suggesting involvement of the corresponding transporters.
View Article and Find Full Text PDFTwenty-two currently marketed antituberculosis drugs were comprehensively evaluated for their inhibitory effect on organic anionic transporter (OAT)- and organic cation transporter (OCT)-mediated uptake using stably transfected HEK293 cells in vitro We observed moderate to strong inhibitory effects on OAT1- and OAT3-mediated para-aminohippurate (PAH) uptake and OCT1- and OCT2-mediated N-methyl-4-phenylpylidinium acetate (MPP) uptake. Ciprofloxacin, linezolid, para-aminosalicylic acid (PAS), and rifampin were observed to have strong inhibitory effects, with the concentrations for a 50% inhibitory effect (ICs) being 35.1, 31.
View Article and Find Full Text PDF