Publications by authors named "Nazarychev V"

Article Synopsis
  • Thermoplastic polyimides are popular in electronics due to their performance but struggle with low thermal conductivity.
  • This study explored nanocomposites made from semicrystalline (R-BAPB, BPDA-P3) and amorphous (ULTEM) polyimides combined with hexagonal nanoparticles like graphene, graphene oxide, and boron nitride to enhance thermal properties.
  • Results showed that incorporating these nanoparticles improved thermal conductivity, especially with increased concentrations, by forming aggregate structures that facilitated phonon transport, despite affecting the mobility of polymer chains.
View Article and Find Full Text PDF

In this study, we have conducted a comparative analysis of the structural ordering of short oligoetherimide chains (dimers) near the bounding surface, depending on the structure of that surface. In order to clarify the possibility of oligoetherimide ordering along the symmetry axes of graphene, two types of bounding surfaces were considered: graphene, with a regular discrete position of interaction centers (carbon atoms), and a smooth, structureless impermeable wall. The chemical structures of the considered dimers consist of two repeating units of BPDA-P3, ODPA-P3, or aBPDA-P3 thermoplastic polyetherimides.

View Article and Find Full Text PDF

Recent experiments and atomistic computer simulations have shown that asphaltene byproducts of oil refineries can serve as thermal conductivity enhancers for organic phase-change materials such as paraffin and therefore have the potential to improve the performance of paraffin-based heat storage devices. In this work, we explore how the size of the polycyclic aromatic cores of asphaltenes affects the properties of paraffin-asphaltene systems by means of atomistic molecular dynamics simulations. We show that increasing the size of the asphaltene core from 7-8 aromatic rings to ∼20 rings drastically changes the aggregation behavior of asphaltenes.

View Article and Find Full Text PDF

Over the past few decades, the enhancement of polymer thermal conductivity has attracted considerable attention in the scientific community due to its potential for the development of new thermal interface materials (TIM) for both electronic and electrical devices. The mechanical elongation of polymers may be considered as an appropriate tool for the improvement of heat transport through polymers without the necessary addition of nanofillers. Polyimides (PIs) in particular have some of the best thermal, dielectric, and mechanical properties, as well as radiation and chemical resistance.

View Article and Find Full Text PDF

Asphaltenes represent a novel class of carbon nanofillers that are of potential interest for many applications, including polymer nanocomposites, solar cells, and domestic heat storage devices. In this work, we developed a realistic coarse-grained Martini model that was refined against the thermodynamic data extracted from atomistic simulations. This allowed us to explore the aggregation behavior of thousands of asphaltene molecules in liquid paraffin on a microsecond time scale.

View Article and Find Full Text PDF

In the present work, we address the problem of utilizing machine learning (ML) methods to predict the thermal properties of polymers by establishing "structure-property" relationships. Having focused on a particular class of heterocyclic polymers, namely polyimides (PIs), we developed a graph convolutional neural network (GCNN), being one of the most promising tools for working with big data, to predict the PI glass transition temperature as an example of the fundamental property of polymers. To train the GCNN, we propose an original methodology based on using a "transfer learning" approach with an enormous "synthetic" data set for pretraining and a small experimental data set for its fine-tuning.

View Article and Find Full Text PDF

A molecular-level insight into phase transformations is in great demand for many molecular systems. It can be gained through computer simulations in which cooling is applied to a system at a constant rate. However, the impact of the cooling rate on the crystallization process is largely unknown.

View Article and Find Full Text PDF

Adding carbon nanoparticles into organic phase change materials (PCMs) such as paraffin is a common way to enhance their thermal conductivity and to improve the efficiency of heat storage devices. However, the sedimentation stability of such blends can be low due to aggregation of aromatic carbon nanoparticles in the aliphatic paraffin environment. In this paper, we explore whether this important issue can be resolved by the introduction of a polymer agent such as poly(3-hexylthiophene) (P3HT) into the paraffin-nanoparticle blends: P3HT could ensure the compatibility of aromatic carbon nanoparticles with aliphatic paraffin chains.

View Article and Find Full Text PDF

The effect of polymer chain ordering on the transport properties of the polymer membrane was examined for the semi-crystalline heterocyclic polyetherimide (PEI) BPDA-P3 based on 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA) and diamine 1,4-bis [4-(4-aminophenoxy)phenoxy]benzene (P3). All-atom Molecular Dynamics (MD) simulations were used to investigate the gas diffusion process carried through the pores of a free volume several nanometers in size. The long-term (~30 μs) MD simulations of BPDA-P3 were performed at = 600 K, close to the experimental value of the melting temperature ( ≈ 577 K).

View Article and Find Full Text PDF

Recently, a strong structural ordering of thermoplastic semi-crystalline polyimides near single-walled carbon nanotubes (SWCNTs) was found that can enhance their mechanical properties. In this study, a comparative analysis of the results of microsecond-scale all-atom computer simulations and experimental measurements of thermoplastic semi-crystalline polyimide R-BAPB synthesized on the basis of dianhydride R (1,3-bis-(3',4-dicarboxyphenoxy) benzene) and diamine BAPB (4,4'-bis-(4″-aminophenoxy) biphenyl) near the SWCNTs on the rheological properties of nanocomposites was performed. We observe the viscosity increase in the SWCNT-filled R-BAPB in the melt state both in computer simulations and experiments.

View Article and Find Full Text PDF

Deep eutectic solvents (DESs) are one of the most rapidly evolving types of solvents, appearing in a broad range of applications, such as nanotechnology, electrochemistry, biomass transformation, pharmaceuticals, membrane technology, biocomposite development, modern 3D-printing, and many others. The range of their applicability continues to expand, which demands the development of new DESs with improved properties. To do so requires an understanding of the fundamental relationship between the structure and properties of DESs.

View Article and Find Full Text PDF

We studied the structure of brushes consisting of branched oligolactide (OLA) chains grafted onto the surface of cellulose nanoparticles (CNPs) in polylactide (PLA) and compared the outcomes to the case of grafting linear OLA chains using atomistic molecular dynamics simulations. The systems were considered in a melt state. The branched model OLA chains comprised one branching point and three branches, while the linear OLA chains examined had a molecular weight similar to the branched chains.

View Article and Find Full Text PDF

The conventional definition of asphaltenes is based on their solubility in toluene and their insolubility in heptane. We have utilized this definition to study the influence of partial charge parametrization on the aggregation behavior of asphaltenes using classical atomistic molecular dynamics simulations performed on the microsecond time scale. Under consideration here are toluene- and heptane-based systems with different partial charges parametrized using the general AMBER force field (GAFF).

View Article and Find Full Text PDF

Paraffin-based composites represent a promising class of materials with numerous practical applications such as heat storage. Computer modeling of these complex multicomponent systems requires a proper theoretical description of both the -alkane matrix and the non-alkane filler molecules. The latter can be modeled with the use of a state-of-the-art general-purpose force field such as GAFF, CHARMM, OPLS-AA and GROMOS, while the paraffin matrix is traditionally described in the frame of relatively old, alkane-specific force fields (TraPPE, NERD, and PYS).

View Article and Find Full Text PDF

Using fully-atomistic models, tens-microseconds-long molecular-dynamic modelling was carried out for the first time to simulate the kinetics of polyimides ordering induced by the presence of single-walled carbon nanotube (SWCNT) nanofillers. Three polyimides (PI) were considered with different dianhydride fragments, namely 3,3',4,4'-biphenyltetracarboxylic dianhydride (BPDA), 2,3',3,4'-biphenyltetracarboxylic dianhydride (aBPDA), and 3,3',4,4'-oxidiphthalic dianhydride (ODPA) and same diamine 1,4-bis[4-(4-aminophenoxy)phenoxy]benzene (diamine P3). Both crystallizable PI BPDA-P3 and two amorphous polyimides ODPA-P3 and aBPDA-P3 reinforced by SWCNTs were studied.

View Article and Find Full Text PDF

Crystallization of all-aromatic heterocyclic polymers typically results in an improvement of their thermo-mechanical properties. Nucleation agents may be used to promote crystallization, and it is well known that the incorporation of nanoparticles, and in particular carbon-based nanofillers, may induce or accelerate crystallization through nucleation. The present study addresses the structural properties of polyetherimide-based nanocomposites and the initial stages of polyetherimide crystallization as a result of single-walled carbon nanotube (SWCNT) incorporation.

View Article and Find Full Text PDF

We present results from all-atom molecular dynamics simulations for the structural properties of oligomeric lactic acid chains (OLA) grafted to the surface of cellulose nanocrystals (CNCs) and immersed in the melt of polylactic acid (PLA). Earlier, we have found that the distribution of free ends of OLA molecules is bimodal [Glova et al., Polym.

View Article and Find Full Text PDF

Specific intermolecular interactions, in particular H-bonding, have a strong influence on the structural, thermal and relaxation characteristics of polymers. We report here the results of molecular dynamics simulations of Nylon 6 which provides an excellent example for the investigation of such an influence. To demonstrate the effect of proper accounting for H-bonding on bulk polymer properties, the AMBER99sb force field is used with two different parametrization approaches leading to two different sets of partial atomic charges.

View Article and Find Full Text PDF

The results of atomistic molecular-dynamics simulations of mechanical properties of heterocyclic polymer subjected to uniaxial deformation are reported. A new amorphous thermoplastic polyimide R-BAPO with a repeat unit consisting of dianhydride 1,3-bis-(3',4,-dicarboxyphenoxy)diphenyl (dianhydride R) and diamine 4,4'-bis-(4''-aminophenoxy)diphenyloxide (diamine BAPO) was chosen for the simulations. Our primary goal was to establish the impact of various factors (sample preparation method, molecular mass, and cooling and deformation rates) on the elasticity modulus.

View Article and Find Full Text PDF

Due to the great importance for many industrial applications it is crucial from the point of view of theoretical description to reproduce thermal properties of thermoplastic polyimides as accurate as possible in order to establish "chemical structure-physical properties" relationships of new materials. In this paper we employ differential scanning calorimetry, dilatometry, and atomistic molecular dynamics (MD) simulations to explore whether the state-of-the-art computer modeling can serve as a precise tool for probing thermal properties of polyimides with highly polar groups. For this purpose the polyimide R-BAPS based on dianhydride 1,3-bis(3',4-dicarboxyphenoxy)benzene (dianhydride R) and diamine 4,4'-bis(4''-aminophenoxy)biphenyl sulphone) (diamine BAPS) was synthesized and extensively studied.

View Article and Find Full Text PDF