Publications by authors named "Nazar Farid"

Heavy metals are the major concern of the modern age. Among the heavy metals, chromium (Cr(VI)) is regarded as a highly toxic heavy metal released largely from leather tanning operations. To remove such high concentrations of Cr(VI), an advanced method is required urgently.

View Article and Find Full Text PDF

A new process to crystallize amorphous silicon without melting and the generation of excessive heating of nearby components is presented. We propose the addition of a molybdenum layer to improve the quality of the laser-induced crystallization over that achieved by direct irradiation of silicon alone. The advantages are that it allows the control of crystallite size by varying the applied fluence of a near-infrared femtosecond laser.

View Article and Find Full Text PDF

We propose a novel low temperature annealing method for selective crystallization of gold thin films. Our method is based on a non-melt process using highly overlapped ultrashort laser pulses at a fluence below the damage threshold. Three different wavelengths of a femtosecond laser with the fundamental (1030 nm), second (515 nm) and third (343 nm) harmonic are used to crystallize 18-nm and 39-nm thick room temperature deposited gold thin films on a quartz substrate.

View Article and Find Full Text PDF

The brain machine interface (BMI) describes a group of technologies capable of communicating with excitable nervous tissue within the central nervous system (CNS). BMIs have seen major advances in recent years, but these advances have been impeded because of a temporal deterioration in the signal to noise ratio of recording electrodes following insertion into the CNS. This deterioration has been attributed to an intrinsic host tissue response, namely, reactive gliosis, which involves a complex series of immune mediators, resulting in implant encapsulation via the synthesis of pro-inflammatory signaling molecules and the recruitment of glial cells.

View Article and Find Full Text PDF

Physiological pressure measurement is one of the most common applications of sensors in healthcare. Particularly, continuous pressure monitoring provides key information for early diagnosis, patient-specific treatment, and preventive healthcare. This paper presents a thin-film flexible wireless pressure sensor for continuous pressure measurement in a wide range of medical applications but mainly focused on interface pressure monitoring during compression therapy to treat venous insufficiency.

View Article and Find Full Text PDF

The diagnosis of the fuel retention and impurity deposition on the plasma facing components (PFCs) is very important for monitoring plasma-wall interactions and improving the performance of long-pulse operation for tokamak devices. In this study, a remote in situ laser-induced breakdown spectroscopic (RIS-LIBS) system has been developed to be an effective and routine method for the diagnosis of the composition of the PFCs on Experimental Advanced Superconducting Tokamak (EAST). The RIS-LIBS system can be operated between EAST discharges via a remote network control system.

View Article and Find Full Text PDF

Following implantation, neuroelectrode functionality is susceptible to deterioration via reactive host cell response and glial scar-induced encapsulation. Within the neuroengineering community, there is a consensus that the induction of selective adhesion and regulated cellular interaction at the tissue-electrode interface can significantly enhance device interfacing and functionality in vivo. In particular, topographical modification holds promise for the development of functionalized neural interfaces to mediate initial cell adhesion and the subsequent evolution of gliosis, minimizing the onset of a proinflammatory glial phenotype, to provide long-term stability.

View Article and Find Full Text PDF