Publications by authors named "Nazanine Modjtahedi"

Article Synopsis
  • TRIAP1 is a protein linked to cancer survival, showing increased expression in various cancers while playing a role in lipid transfer within mitochondria.
  • In colorectal cancer cells, TRIAP1 promotes cell growth and tumor formation, with its depletion disturbing mitochondrial structure and affecting lipid balance in the endoplasmic reticulum.
  • Lack of TRIAP1 triggers a strong p53-mediated stress response and enhances resistance to metabolic stresses like glutamine deprivation, underscoring its importance in cancer metabolism and adaptability.
View Article and Find Full Text PDF

Mitochondria are critical for several cellular functions as they control metabolism, cell physiology, and cell death. The mitochondrial proteome consists of around 1500 proteins, the vast majority of which (about 99% of them) are encoded by nuclear genes, with only 13 polypeptides in human cells encoded by mitochondrial DNA. Therefore, it is critical for all the mitochondrial proteins that are nuclear-encoded to be targeted precisely and sorted specifically to their site of action inside mitochondria.

View Article and Find Full Text PDF

In the mitochondria of healthy cells, Apoptosis-Inducing factor (AIF) is required for the optimal functioning of the respiratory chain machinery, mitochondrial integrity, cell survival, and proliferation. In all analysed species, it was revealed that the downregulation or depletion of AIF provokes mainly the post-transcriptional loss of respiratory chain Complex I protein subunits. Recent progress in the field has revealed that AIF fulfils its mitochondrial pro-survival function by interacting physically and functionally with CHCHD4, the evolutionarily-conserved human homolog of yeast Mia40.

View Article and Find Full Text PDF

Cancer is a major and still increasing cause of death in humans. Most cancer cells have a fundamentally different metabolic profile from that of normal tissue. This shift away from mitochondrial ATP synthesis via oxidative phosphorylation towards a high rate of glycolysis, termed Warburg effect, has long been recognized as a paradigmatic hallmark of cancer, supporting the increased biosynthetic demands of tumor cells.

View Article and Find Full Text PDF

Apoptosis-inducing factor (AIF) may contribute to neuronal cell death, and its influence is particularly prominent in the immature brain after hypoxia-ischemia (HI). A brain-specific AIF splice-isoform (AIF2) has recently been discovered, but has not yet been characterized at the genetic level. The aim of this study was to determine the functional and regulatory profile of AIF2 under physiological conditions and after HI in mice.

View Article and Find Full Text PDF

Even though cell death modalities elicited by anticancer chemotherapy and radiotherapy have been extensively studied, the ability of anticancer treatments to induce non-cell-autonomous death has never been investigated. By means of multispectral imaging flow-cytometry-based technology, we analyzed the lethal fate of cancer cells that were treated with conventional anticancer agents and co-cultured with untreated cells, observing that anticancer agents can simultaneously trigger cell-autonomous and non-cell-autonomous death in treated and untreated cells. After ionizing radiation, oxaliplatin, or cisplatin treatment, fractions of treated cancer cell populations were eliminated through cell-autonomous death mechanisms, while other fractions of the treated cancer cells engulfed and killed neighboring cells through non-cell-autonomous processes, including cellular cannibalism.

View Article and Find Full Text PDF

Radiation therapy is one of the major therapeutic modalities for most solid tumors. The anti-tumor effect of radiation therapy consists of the direct tumor cell killing, as well as the modulation of tumor microenvironment and the activation of immune response against tumors. Radiation therapy has been shown to promote immunogenic cells death, activate dendritic cells and enhance tumor antigen presentation and anti-tumor T cell activation.

View Article and Find Full Text PDF

Despite prominent role of radiotherapy in lung cancer management, there is an urgent need for strategies increasing therapeutic efficacy. Reversible epigenetic changes are promising targets for combination strategies using HDAC inhibitors (HDACi). Here we evaluated on two NSCLC cell lines, the antitumor effect of abexinostat, a novel pan HDACi combined with irradiation in normoxia and hypoxia, by clonogenic assays, demonstrating that abexinostat enhances radiosensitivity in a time dependent way with mean SER10 between 1.

View Article and Find Full Text PDF

Radiation therapy is one of the cornerstones of cancer treatment. In tumor cells, exposure to ionizing radiation (IR) provokes DNA damages that trigger various forms of cell death such as apoptosis, necrosis, autophagic cell death, and mitotic catastrophe. IR can also induce cellular senescence that could serve as an additional antitumor barrier in a context-dependent manner.

View Article and Find Full Text PDF

Although tumor-associated macrophages have been extensively studied in the control of response to radiotherapy, the molecular mechanisms involved in the ionizing radiation-mediated activation of macrophages remain elusive. Here we show that ionizing radiation induces the expression of interferon regulatory factor 5 (IRF5) promoting thus macrophage activation toward a pro-inflammatory phenotype. We reveal that the activation of the ataxia telangiectasia mutated (ATM) kinase is required for ionizing radiation-elicited macrophage activation, but also for macrophage reprogramming after treatments with γ-interferon, lipopolysaccharide or chemotherapeutic agent (such as cisplatin), underscoring the fact that the kinase ATM plays a central role during macrophage phenotypic switching toward a pro-inflammatory phenotype through the regulation of mRNA level and post-translational modifications of IRF5.

View Article and Find Full Text PDF

Mitochondria contribute to neonatal hypoxic-ischemic brain injury by releasing potentially toxic proteins into the cytosol. CHCHD4 is a mitochondrial intermembrane space protein that plays a major role in the import of intermembrane proteins and physically interacts with apoptosis-inducing factor (AIF). The purpose of this study was to investigate the impact of CHCHD4 haploinsufficiency on mitochondrial function and brain injury after cerebral hypoxia-ischemia (HI) in neonatal mice.

View Article and Find Full Text PDF

Mitochondrial apoptosis inducing factor (AIF) is a redox-active enzyme that participates to the biogenesis/maintenance of complex I of the respiratory chain, yet also contributes to catabolic reactions in the context of regulated cell death when AIF translocates to the cytosol and to the nucleus. Here we explore the contribution of AIF to cell death induced by menadione (2-methyl-1,4-naphtoquinone; also called vitamin K3) in conditions in which this pro-oxidant does not cause the mitochondrial release of AIF, yet causes caspase-independent cell killing. Depletion of AIF from human cancer cells reduced the cytotoxicity of menadione.

View Article and Find Full Text PDF

During the evolution from yeast to mammals the Mia40 protein, the regulator of the redox-sensitive mitochondrial intermembrane space import machinery, has lost its membrane-anchorage segment to become CHCHD4, which interacts with the flavoprotein apoptosis-inducing factor (AIF). Our results establish CHCHD4 as the missing link between AIF deficiency and dysfunctional biogenesis of respiratory chain complexes.

View Article and Find Full Text PDF

Members of the coiled-coil-helix-coiled-coil-helix (CHCH) domain-containing protein family that carry (CX9C) type motifs are imported into the mitochondrion with the help of the disulfide relay-dependent MIA import pathway. These evolutionarily conserved proteins are emerging as new cellular factors that control mitochondrial respiration, redox regulation, lipid homeostasis, and membrane ultrastructure and dynamics. We discuss recent insights on the activity of known (CX9C) motif-carrying proteins in mammals and review current data implicating the Mia40/CHCHD4 import machinery in the regulation of their mitochondrial import.

View Article and Find Full Text PDF

Hypomorphic mutation of apoptosis-inducing factor (AIF) in the whole body or organ-specific knockout of AIF compromises the activity of respiratory chain complexes I and IV, as it confers resistance to obesity and diabetes induced by high-fat diet. The mitochondrial defect induced by AIF deficiency can be explained by reduced AIF-dependent mitochondrial import of CHCHD4, which in turn is required for optimal import and assembly of respiratory chain complexes. Here we show that, as compared to wild type control littermates, mice with a heterozygous knockout of CHCHD4 exhibit reduced weight gain when fed with a Western style high-fat diet.

View Article and Find Full Text PDF

Apoptosis-inducing factor (AIF) is a mitochondrial flavoprotein that, beyond its apoptotic function, is required for the normal expression of major respiratory chain complexes. Here we identified an AIF-interacting protein, CHCHD4, which is the central component of a redox-sensitive mitochondrial intermembrane space import machinery. Depletion or hypomorphic mutation of AIF caused a downregulation of CHCHD4 protein by diminishing its mitochondrial import.

View Article and Find Full Text PDF

Some successful chemotherapeutics, notably anthracyclines and oxaliplatin, induce a type of cell stress and death that is immunogenic, hence converting the patient's dying cancer cells into a vaccine that stimulates antitumor immune responses. By means of a fluorescence microscopy platform that allows for the automated detection of the biochemical hallmarks of such a peculiar cell death modality, we identified cardiac glycosides (CGs) as exceptionally efficient inducers of immunogenic cell death, an effect that was associated with the inhibition of the plasma membrane Na(+)- and K(+)-dependent adenosine triphosphatase (Na(+)/K(+)-ATPase). CGs exacerbated the antineoplastic effects of DNA-damaging agents in immunocompetent but not immunodeficient mice.

View Article and Find Full Text PDF

Extracellular adenosine triphosphate (ATP) can activate purinergic receptors of the plasma membrane and modulate multiple cellular functions. We report that ATP is released from HIV-1 target cells through pannexin-1 channels upon interaction between the HIV-1 envelope protein and specific target cell receptors. Extracellular ATP then acts on purinergic receptors, including P2Y2, to activate proline-rich tyrosine kinase 2 (Pyk2) kinase and transient plasma membrane depolarization, which in turn stimulate fusion between Env-expressing membranes and membranes containing CD4 plus appropriate chemokine co-receptors.

View Article and Find Full Text PDF

Apoptosis-inducing factor (AIF) was initially discovered as a caspase-independent death effector. AIF fulfills its lethal function after its release from mitochondria and its translocation to the nucleus of the dying cell. The contribution of AIF to programmed cell death is dependent upon the cell type and apoptotic insult.

View Article and Find Full Text PDF

Neuroglobin (Ngb) is a hexacoordinate globin expressed in the nervous system of vertebrates, where it protects neurons against hypoxia. Ferrous Ngb has been proposed to favor cell survival by scavenging NO and/or reducing cytochrome c released into the cytosol during hypoxic stress. Both catalytic functions require an as yet unidentified Ngb-reductase activity.

View Article and Find Full Text PDF

Since its discovery nearly a decade ago, apoptosis-inducing factor (AIF) has had anything but a staid and uneventful existence. AIF was originally described as a mitochondrial intermembrane protein that, after apoptosis induction, can translocate to the nucleus and trigger chromatin condensation and DNA fragmentation. Over the years, an AIF-mediated caspase-independent cell death pathway has been defined.

View Article and Find Full Text PDF

In several paradigms of cell death, mitochondrial membrane permeabilization (MMP) delimits the frontier between life and death. Mitochondria control the intrinsic pathway of apoptosis and participate in the extrinsic pathway. Moreover, they have been implicated in nonapoptotic cell death modalities.

View Article and Find Full Text PDF

Autophagic (or type 2) cell death is characterized by the massive accumulation of autophagic vacuoles (autophagosomes) in the cytoplasm of cells that lack signs of apoptosis (type 1 cell death). Here we detail and critically assess a series of methods to promote and inhibit autophagy via pharmacological and genetic manipulations. We also review the techniques currently available to detect autophagy, including transmission electron microscopy, half-life assessments of long-lived proteins, detection of LC3 maturation/aggregation, fluorescence microscopy, and colocalization of mitochondrion- or endoplasmic reticulum-specific markers with lysosomal proteins.

View Article and Find Full Text PDF

Upon cerebral hypoxia-ischemia (HI), apoptosis-inducing factor (AIF) can move from mitochondria to nuclei, participate in chromatinolysis, and contribute to the execution of cell death. Previous work (Cande, C., N.

View Article and Find Full Text PDF