The self-assembly of magnetic nanoparticles into higher-order organizations upon external magnetic stimulation has critical importance for the fabrication of discrete microstructures. In this study, the tuning of self-assembly behavior of magnetic Fe3O4 nanoparticles (MNPs), with an average size of 6 nm, under the enhanced magnetic force upon changing the applied field strength and direction is explored. Upon evaporation of the solvent where the MNPs are suspended, formation of particular micrometer sized structures is achieved with a surface constructed from sub-micrometer size magnetic beads in between the applied magnetic field and MNPs.
View Article and Find Full Text PDFUnilamellar liposomes, prepared from synthetic lipid mixture of DMPC and DMPG either by sonication or extrusion, were used to entrap water soluble and water insoluble molecules to investigate the efficacy of encapsulation by different liposome preparation methods. In the case of entrapment of hydrophilic protein cytochrome-C, the solutions were subjected to a series of ultrafiltration steps to eliminate any free protein outside the vesicles. It was observed that the protein could be encapsulated by the vesicles only if cholesterol was present in the bilayer.
View Article and Find Full Text PDFThe self-assembly of nanoparticles into higher organizations in a controlled manner has critical importance for the utility of the unique properties of nanoparticles. The behavior of magnetic Fe(3)O(4) nanoparticles (MNPs) with an average size of 6 nm under an enhanced magnetic force is reported. Upon evaporation of the solvent where the MNPs are suspended, formation of unique micrometer-sized structures is achieved only when there is a patterned surface constructed from sub-micrometer size magnetic beads in between the applied magnetic field and the MNPs.
View Article and Find Full Text PDF