Publications by authors named "Naz Doganci"

Working Memory (WM) is a cognitive system whose crucial role is to temporarily hold and manipulate information. Early studies suggest that verbal WM is typically associated with left hemisphere (LH) brain regions, while the processing of visuospatial information in WM more specifically depends on the right hemisphere (RH). However, recent evidence suggests a more complex network involving both hemispheres' prefrontal and posterior parietal cortices in these processes.

View Article and Find Full Text PDF

An influential model of spatial attention postulates three main attention-orienting mechanisms: disengagement, shifting, and engagement. Early research linked disengagement deficits with superior parietal damage, regardless of hemisphere or presence of spatial neglect. Subsequent studies supported the involvement of more ventral parietal regions, especially in the right hemisphere, and linked spatial neglect to deficient disengagement from ipsilateral cues.

View Article and Find Full Text PDF

Mental rotation (MR) is widely regarded as a quintessential example of an embodied cognitive process. This viewpoint stems from the functional parallels between MR and the physical rotation of tangible objects, as well as participants' inclination to employ motor-based strategies when tackling MR tasks involving bodily stimuli. These commonalities imply that MR may depend on brain regions crucial for the planning and execution of motor programs.

View Article and Find Full Text PDF

Functional neuroimaging shows that dorsal frontoparietal regions exhibit conjoint activity during various motor and cognitive tasks. However, it is unclear whether these regions serve several, computationally independent functions, or underlie a motor "core process" that is reused to serve higher-order functions. We hypothesized that mental rotation capacity relies on a phylogenetically older motor process that is rooted within these areas.

View Article and Find Full Text PDF

While much of motor behavior is automatic, intentional action is necessary for the selection and initiation of controlled motor acts and is thus an essential part of goal-directed behavior. Neuroimaging studies have shown that self-generated action implicates several dorsal and ventral frontoparietal areas. However, knowledge of the functional coupling between these brain regions during intentional action remains limited.

View Article and Find Full Text PDF

The aim of this article is to discuss the logic and assumptions behind the concept of neural reuse, to explore its biological advantages and to discuss the implications for the cognition of a brain that reuses existing circuits and resources. We first address the requirements that must be fulfilled for neural reuse to be a biologically plausible mechanism. Neural reuse theories generally take a developmental approach and model the brain as a dynamic system composed of highly flexible neural networks.

View Article and Find Full Text PDF

Despite intense research, the neural correlates of stroke-induced deficits of spatial cognition remain controversial. For example, several cortical regions and white-matter tracts have been designated as possible anatomic predictors of spatial neglect. However, many studies focused on local anatomy, an approach that does not harmonize with the notion that brain-behavior relationships are flexible and may involve interactions among distant regions.

View Article and Find Full Text PDF

Synchronization of neural activity as measured with functional connectivity (FC) is increasingly used to study the neural basis of brain disease and to develop new treatment targets. However, solid evidence for a causal role of FC in disease and therapy is lacking. Here, we manipulated FC of the ipsilesional primary motor cortex in ten chronic human stroke patients through brain-computer interface technology with visual neurofeedback.

View Article and Find Full Text PDF