Effective mitigation technology to prevent the spread of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is required before achieving population immunity through vaccines. Here we demonstrate a virus-blocking textile (VBT) that repulses SARS-CoV-2 by applying repulsive Coulomb force to respiratory particles, powered by human body triboelectric energy harvesting. We show that SARS-CoV-2 has negative charges, and a human body generates high output current of which peak-to-peak value reaches 259.
View Article and Find Full Text PDFInflammasome plays a critical role in diverse inflammatory disorders, including cancers and Alzheimer's disease. It is induced by various pathogenic insults and activates caspase-1, a hallmark executor of inflammasome. Here, we developed an activatable fluorescence probe for visualization of active caspase-1.
View Article and Find Full Text PDFEngineering and application of nanomaterials have recently helped advance various biomedical fields. Zinc oxide (ZnO)-based nanocomposites have become one of the most promising candidates for biomedical applications due to their biocompatibility, unique physicochemical properties, and cost-effective mass production. In addition, recent advances in nano-engineering technologies enable the generation of ZnO nanocomposites with unique three-dimensional structures and surface characteristics that are optimally designed for in vivo applications.
View Article and Find Full Text PDFZinc oxide (ZnO)-based nanocomposites have shown promising potential for various biomedical applications, including vaccine development, owing to their multifunctionality and biocompatibility. Here, we synthesized radially grown ZnO nanowires (NWs) on poly-l-lactic acid (PLLA) microfibers with unique 3-dimensional structure and applied them as therapeutic cancer vaccines. This inorganic-organic hybrid nanocomposite has mild cellular toxicity but efficiently delivers a tumor antigen into dendritic cells, cellular bridges between innate and adaptive immunity, to stimulate them to express inflammatory cytokines and activation surface markers.
View Article and Find Full Text PDF