J Biomater Appl
September 2024
This study addresses the morphological and chemical characterization of PGS scaffolds after (6, 12, 18, 24, and 30 min) residence in undoped pyrrole plasma (PGS-PPy) and the evaluation of cell viability with human dental pulp stem cells (hDPSCs). The results were compared with a previous study that used iodine-doped pyrrole (PGS-PPy/I). Analyses through SEM and AFM revealed alterations in the topography and quantity of deposited PPy particles.
View Article and Find Full Text PDFJ Biomater Sci Polym Ed
February 2024
Carbon allotrope materials (i.e. carbon nanotubes (CNTs), graphene, graphene oxide (GO)), have been used to reinforce acrylic bone cement.
View Article and Find Full Text PDFBackground: Bovine pericardium (BP) is a scaffold widely used in soft tissues regeneration; however, its calcification in contact with glutaraldehyde, represent an opportunity for its application in hard tissues, such as bone in the oral cavity.
Objective: To develop and to characterize decellularized and glutaraldehyde-crosslinked bovine pericardium (GC-BP) as a potential scaffold for guided bone regeneration GBR.
Methods: BP samples from healthy animals of the bovine zebu breed were decellularized and crosslinked by digestion with detergents and glutaraldehyde respectively.
During the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic, scientists from different areas are looking for alternatives to fight it. SARS-CoV-2, the cause of the infectious respiratory disease COVID-19, is mainly transmitted through direct or indirect contact with infected respiratory droplets. The integrity of the virus structure is crucial for its viability to attack human cells.
View Article and Find Full Text PDFPolymers (Basel)
November 2022
Grafting polyethylene glycol (PEG) onto a polymer's surface is widely used to improve biocompatibility by reducing protein and cell adhesion. Although PEG is considered to be bioinert, its incorporation onto biomaterials has shown to improve cell viability depending on the amount and molecular weight (MW) used. This phenomenon was studied here by grafting PEG of three MW onto polyurethane (PU) substrata at three molar concentrations to assess their effect on PU surface properties and on the viability of osteoblasts and fibroblasts.
View Article and Find Full Text PDFRecently, different carbon-based nanomaterials have been used as reinforcing agents in acrylic bone cement formulations. Among them, graphene oxide (GO) has attracted the attention of scientific community since it could improve not only the mechanical properties but also the biocompatibility characteristics of these materials. However, using GO presents some drawbacks, such as its poor dispersion and lack of interaction with polymeric matrices, which should be prior resolved to achieve its optimal performance in acrylic bone cement.
View Article and Find Full Text PDFAn alternative for the production of drug delivery system is proposed based on the Ceiba pentandra milkweed. The kapok cellulose was chemically crosslinked with citric acid (CA) at different CA proportions, and loaded with chlorhexidine diacetate (CHX) at different concentrations. Cellulose crosslinking was followed with FTIR and XPS analysis, and the CHX loading was determined using elemental analysis.
View Article and Find Full Text PDFBackground: Bovine bone matrix is a natural material that has been used in the treatment of bone lesions. In this study, bovine bone matrix Nukbone® (NKB) was investigated due its osteoconductive and osteoinductive properties. This biomaterial induces CBFA-1 activation and osteogenic differentiation, although the cytokines involved in these processes is still unknown.
View Article and Find Full Text PDFJ Biomater Appl
October 2021
Polyglycerol sebacate (PGS) scaffolds obtained using a leaching technique were modified with iodine-doped polypyrrole (PPy-I) in a plasma reactor in order to study the effect of exposure time on the cell viability of hDPSCs. SEM analysis showed the formation and growth of PPy-I particles as the exposure time was increased, while FTIR and XPS analysis revealed the presence of -NH- and N+ groups in the chemical composition of the surfaces, relating to the increase in the amount of PPY-I particles. The water contact angle measurements showed an increase in the scaffold's hydrophilicity with greater exposure times which was also attributed to the rising of PPy-I particles.
View Article and Find Full Text PDFDisruption of the continuous cutaneous membrane in the integumentary system is considered a health problem of high cost for any nation. Several attempts have been made for developing skin substitutes in order to restore injured tissue including autologous implants and the use of scaffolds based on synthetic and natural materials. Current biomaterials used for skin tissue repair include several scaffold matrices types, synthetic or natural, absorbable, degradable or non-degradable polymers, porous or dense scaffolds, and cells capsulated in hydrogels or spheroids systems so forth.
View Article and Find Full Text PDFCopper nanoparticles (NCu) were synthetized and added to commercial glass ionomer cement, to evaluate in vitro its antibacterial activity against oral cavity strains. The NCu were synthesized by copper acetate reduction with L-ascorbic acid and characterized by FTIR, Raman, XPS, XRD and TEM. Then, commercial glass ionomer cement (GIC) was modified (MGIC) with various concentrations of NCu and physicochemically characterized.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) have a differentiation potential towards osteoblastic lineage when they are stimulated with soluble factors or specific biomaterials. This work presents a novel option for the delivery of MSCs from human amniotic membrane (AM-hMSCs) that employs bovine bone matrix Nukbone (NKB) as a scaffold. Thus, the application of MSCs in repair and tissue regeneration processes depends principally on the efficient implementation of the techniques for placing these cells in a host tissue.
View Article and Find Full Text PDFCollagen-polyvinylpyrrolidone (C-PVP) is a copolymer that is generated from the γ irradiation of a mixture of type I collagen and low-molecular-weight PVP. It is characterized by immunomodulatory, fibrolytic, and antifibrotic properties. Here, we used various physicochemical and biological strategies to characterize the structure, biochemical susceptibility, as well as its effects on metabolic activity in fibroblasts.
View Article and Find Full Text PDFBovine bone matrix Nukbone® (NKB) is an osseous tissue-engineering biomaterial that retains its mineral and organic phases and its natural bone topography and has been used as a xenoimplant for bone regeneration in clinics. There are not studies regarding its influence of the NKB in the behavior of cells during the repairing processes. The aim of this research is to demonstrate that NKB has an osteoinductive effect in human mesenchymal stem cells from amniotic membrane (AM-hMSCs).
View Article and Find Full Text PDFThe tricarboxylic acid (TCA) cycle is the main ATP provider for the heart. TCA carbons must be replenished by anaplerosis for normal cardiac function. Biotin is cofactor of the anaplerotic enzymes pyruvate and propionyl-CoA carboxylases.
View Article and Find Full Text PDFPyruvate carboxylase (PC) is a biotin-dependent enzyme that plays a crucial role in gluconeogenesis, lipogenesis, Krebs cycle anaplerosis and amino acid catabolism. Biotin deficiency reduces its mass besides its activity. Enzyme mass is the result of its cellular turnover, i.
View Article and Find Full Text PDF