Publications by authors named "Naydov I"

The redox state of the plastoquinone (PQ) pool in thylakoids plays an important role in the regulation of chloroplast metabolism. In the light, the PQ pool is mostly reduced, followed by oxidation after light cessation. It has been believed for a long time that dark oxidation depends on oxygen, although the precise mechanisms of the process are still unknown and debated.

View Article and Find Full Text PDF

This study investigates the use of photoluminescent amphiphilic porous silicon nanoparticles (αϕ-pSiNPs) as effective ultrasound (US) amplifiers for cancer sonodynamic theranostics. αϕ-pSiNPs were synthesized via a novel top-down approach involving porous silicon (pSi) films electrochemical etching, borate oxidation, and hydrophobic coating with octadecylsilane (C18), resulting in milling into nanoparticles with hydrophilic exteriors and hydrophobic interiors. These properties promote gas trapping and cavitation nucleation, significantly lowering the US cavitation threshold and resulting in selective destruction of cancer cells in the presence of nanoparticles.

View Article and Find Full Text PDF

Inhibitory analysis is a useful tool for studying cytochrome bf complex in the photosynthetic electron transport chain. Here, we examine the inhibitory efficiency of two widely used inhibitors of the plastoquinol oxidation in the cytochrome bf complex, namely 2,4-dinitrophenyl ether of 2-iodo-4-nitrothymol (DNP-INT) and 2,5-dibromo-3-methyl-6-isopropylbenzoquinone (DBMIB). Using isolated thylakoids from pea and arabidopsis, we demonstrate that inhibitory activity of DNP-INT and DBMIB is enhanced by increasing irradiance, and this effect is due to the increase in the rate of electron transport.

View Article and Find Full Text PDF

Solar energy absorbed by plants can be redistributed between photosystems in the process termed "state transitions" (ST). ST represents a reversible transition of a part of the PSII light harvesting complex (L-LHCII) between photosystem II (PSII) and photosystem I (PSI) in response to the change in light spectral composition. The present work demonstrates a slower development of the state 1 to state 2 transition, i.

View Article and Find Full Text PDF

The knockout of the gene encoding α-carbonic anhydrase 2 (α-CA2) in (Columbia) led to alterations in photosynthetic processes. The effective quantum yields of both photosystem II (PSII) and photosystem I (PSI) were higher in α-carbonic anhydrase 2 knockout plants (α-CA2-KO), and the reduction state of plastoquinone pool was lower than in wild type (WT). The electron transport rate in the isolated thylakoids measured with methyl viologen was higher in α-CA2-KO plants.

View Article and Find Full Text PDF

The carbonic anhydrase (CA) activities of the preparations of cytoplasm, mitochondria, chloroplast stroma, and chloroplast thylakoids, as well as the expression levels of genes encoding αCA1, αCA2, αCA4, βCA1, βCA2, βCA3, βCA4, βCA5, and βCA6, were measured in the leaves of plants, acclimated to different CO content in the air: low (150 ppm, lCO), normal (450 ppm, nCO), and high (1200 ppm, hCO). To evaluate the photosynthetic apparatus operation, the carbon assimilation and chlorophyll fluorescence were measured under the same conditions. It was found that the CA activities of the preparations of cytoplasm, chloroplast stroma, and chloroplast thylakoids measured after two weeks of acclimation were higher, the lower CO concentration in the air.

View Article and Find Full Text PDF

Inhibitory analysis is a useful tool for studying reactions in the photosynthetic apparatus. After introducing by Aachim Trebst in 1978, dinitrophenylether of iodonitrothymol (DNP-INT), a competitive inhibitor of plastoquinol oxidation at the cytochrome (cyt.) bf complex, has been widely applied to study reactions occurring in the plastoquinone pool and the cyt.

View Article and Find Full Text PDF

We investigated acclimatory responses of Arabidopsis plants to drought and salinity conditions before the appearance of obvious signs of damage caused by these factors. We detected changes indicating an increase in the reduction level of the chloroplast plastoquinone pool (PQ pool) 5-7 days after introduction of the stress factors. After 10-14 days, a decrease in the size of PSII light harvesting antenna was observed in plants under conditions of drought and salinity.

View Article and Find Full Text PDF

The aim of this work was a comparative study of S-repleted and S-depleted photoautotrophic cultures of Chlamydomonas reinhardtii under aerobic and anoxic conditions with the main focus on PSII activity. For that we used photobioreactor with short light path connected on-line to PAM fluorometer and cultivated microalgae in twice concentrated HS medium to avoid any uncontrolled limitation by mineral elements. Photoautotrophic cultures grown under Ar + CO gas mixture did not reach the same Chl (a + b) concentration as control culture (grown under air + CO).

View Article and Find Full Text PDF

The role of α-carbonic anhydrase 4 (α-CA4) in photosynthetic machinery functioning in thylakoid membranes was studied, using Arabidopsis thaliana wild type plants (WT) and the plants with knockout of At4g20990 gene encoding α-CA4 (αCA4-mut) grown both in low light (LL, 80 μmol quanta m s) or in high light (HL, 400 μmol quanta m s). It was found that a content of PsbS protein, one of determinants of non-photochemical quenching of chlorophyll fluorescence, increased in mutants by 30% and 100% compared with WT plants in LL and in HL, respectively. Violaxanthin cycle pigments content and violaxanthin deepoxidase activity in HL were also higher in αCA4-mut than in WT plants.

View Article and Find Full Text PDF

The characteristics of the formation of the superoxide radical anion ([Formula: see text]) and hydrogen peroxide by xanthine oxidases isolated from microorganisms and from cow's milk were investigated. The increase in pH led to an increase in the rate of xanthine oxidation with oxygen by both xanthine oxidases. The functioning of xanthine oxidase from milk along with the two-electron reduction of O to HO carries through the one-electron reduction of O to [Formula: see text], and the rate and the fraction of generation of [Formula: see text] increased with increasing pH.

View Article and Find Full Text PDF

The plastoquinone (PQ)-pool in chloroplast thylakoid membranes is a key electron carrier in the photosynthetic electron transport chain (PETC), and its redox state plays an essential role in the control of plant metabolism. Oxygen reduction in thylakoid membranes produces superoxide anion radicals ( ), which may react with the PQ-pool. Here, using isolated thylakoids, we show for the first time the oxidation of the PQ-pool by .

View Article and Find Full Text PDF

Higher plants possess the ability to trigger a long-term acclimatory response to different environmental light conditions through the regulation of the light-harvesting antenna size of photosystem II. The present study provides an insight into the molecular nature of the signal which initiates the high light-mediated response of a reduction in antenna size. Using barley (Hordeum vulgare) plants, it is shown (i) that the light-harvesting antenna size is not reduced in high light with a low hydrogen peroxide content in the leaves; and (ii) that a decrease in the antenna size is observed in low light in the presence of an elevated concentration of hydrogen peroxide in the leaves.

View Article and Find Full Text PDF

In arabidopsis plants, with an increase in illumination intensity during growth the extent of reduction of the plastoquinone pool in the photosynthetic electron transport chain increased, whereas the effective quantum yield of photosynthesis decreased. After 5 days of growth under high illumination intensity, these parameters in high light returned to values observed in "shade-adapted" plants in low light. During the same period, the size of the antenna decreased, correlating with a decrease in the amounts of proteins of peripheral pigment-protein complexes.

View Article and Find Full Text PDF

Light-induced generation of superoxide radicals and hydrogen peroxide in isolated thylakoids has been studied with a lipophilic spin probe, cyclic hydroxylamine 1-hydroxy-4-isobutyramido-2,2,6,6-tetramethylpiperidinium (TMT-H) to detect superoxide radicals, and the spin trap α-(4-pyridyl-1-oxide)-N-tert-butylnitron (4-POBN) to detect hydrogen peroxide-derived hydroxyl radicals. Accumulation of the radical products of the above reactions has been followed using electron paramagnetic resonance. It is found that the increased production of superoxide radicals and hydrogen peroxide in higher light is due to the enhanced production of these species within the thylakoid membrane, rather than outside the membrane.

View Article and Find Full Text PDF

The dye H(2)DCF-DA, which forms the fluorescent molecule DCF in the reaction with hydrogen peroxide, H(2)O(2), was used to study light-induced H(2)O(2) production in isolated intact chloroplasts and in protoplasts of mesophyll cells of Arabidopsis, pea, and maize. A technique to follow the kinetics of light-induced H(2)O(2) production in the photosynthesizing cells using this dye has been developed. Distribution of DCF fluorescence in these cells in the light has been investigated.

View Article and Find Full Text PDF

The effect of ammonium on ATP synthesis, electron transfer, and light-induced uptake of hydrogen ions in pea chloroplasts was studied. It is shown that the dependence of these reactions on ammonium concentration could be due to effects of two different uncoupling processes. The first process is induced by low ammonium concentrations (<0.

View Article and Find Full Text PDF

Hydrogen peroxide (H(2)O(2)) is recognized as an important signalling molecule. There are two important aspects to this function: H(2)O(2) production and its diffusion to its sites of action. The production of H(2)O(2) by photosynthetic electron transport and its ability to diffuse through the chloroplast envelope membranes has been investigated using spin trapping electron paramagnetic resonance spectroscopy and H(2)O(2)-sensitive fluorescence dyes.

View Article and Find Full Text PDF