Publications by authors named "Nayan G Solanki"

In this study, the processability of polyvinyl alcohol (PVA), a water-soluble polymer, into melt-extruded filaments and then into 3D printed tablets by fused deposition modeling was studied. PVA is semicrystalline with Tg and m.p.

View Article and Find Full Text PDF

Hydroxypropyl methylcellulose acetate succinate (HPMCAS) has gained popularity as a carrier for amorphous solid dispersion because of its ability to maintain drugs in supersaturated state after dissolution in aqueous media. In part I and II of this series of articles, we have demonstrated that amorphous solid dispersions containing HPMCAS may be prepared using surfactants as plasticizers to reduce processing temperature (Solanki et al., J Pharm Sci.

View Article and Find Full Text PDF

Although hydroxypropyl methylcellulose acetate succinate (HPMCAS) has been widely used as a carrier for amorphous solid dispersion of poorly water-soluble drugs, its application has mostly been limited to spray drying, and the solvent-free method of hot melt extrusion has rarely been used. This is on account of the high temperature (≥170°C) required for extrusion where the polymer and even a drug may degrade. In part 1 of this series of papers, we demonstrated that HPMCAS is miscible with surfactants such as, poloxamer 188, poloxamer 407 and d-alpha tocopheryl polyethylene glycol 1000 succinate, which may also serve as plasticizers (Solanki et al.

View Article and Find Full Text PDF

Hydroxypropyl methylcellulose acetate succinate (HPMCAS) has been widely investigated as a carrier for amorphous solid dispersion (ASD) of poorly water-soluble drugs. However, its use has mostly been limited to ASDs prepared by spray drying using organic solvents, and the solvent-free method, hot-melt extrusion (HME), has only limited use because it requires high processing temperature where the polymer and drug may degrade. In this investigation, surfactants were used as plasticizers to reduce the processing temperature.

View Article and Find Full Text PDF

The primary aim of this study was to identify pharmaceutically acceptable amorphous polymers for producing 3D printed tablets of a model drug, haloperidol, for rapid release by fused deposition modeling. Filaments for 3D printing were prepared by hot melt extrusion at 150°C with 10% and 20% w/w of haloperidol using Kollidon VA64, Kollicoat IR, Affinsiol15 cP, and HPMCAS either individually or as binary blends (Kollidon VA64 + Affinisol 15 cP, 1:1; Kollidon VA64 + HPMCAS, 1:1). Dissolution of crushed extrudates was studied at pH 2 and 6.

View Article and Find Full Text PDF