The stability and slow and incomplete drug release are the key problems for graphene oxide nanocarrier systems. To solve the above problems, we constructed a new drug delivery system from the graphene oxide (GO) decorated with the redox-sensitive prodrug molecules for cancer therapy. PEG-PCL-SS-DOX (prodrug) was synthesized by linking the anticancer drug doxorubicin (DOX) to the biodegradable and biocompatible amphiphilic copolymers PEG-PCL via redox-sensitive disulfide bond.
View Article and Find Full Text PDFTargeting drug carrier systems based on graphene oxide (GO) are of great interest, since it can selectively deliver anticancer drugs to tumor cells, and enhance therapeutic activities with minimized side effects. However, direct grafting target molecules on GO usually results in aggregation of physiological fluid, limiting its biomedical applications. Here, we propose a new strategy to construct targeting GO drug carrier using folic acid grafted bovine serum albumin (FA-BSA) as both the stabilizer and targeting agent.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
December 2015
In order to overcome the drawbacks of cytarabine (Ara-C), such as low lipophilicity as well as short plasma half-life and rapid inactivation, a new derivative of Ara-C was designed by incorporation into the non-toxic material, oleic acid (OA), obtaining an amphiphilic small molecular weight prodrug (OA-Ara). By a simple amidation reaction, OA-Ara was synthesized successfully with a yield up to 61.32%.
View Article and Find Full Text PDFA green and mild approach for the preparation of reduced graphene oxide (rGO) was proposed by using riboflavin-5'-phosphate sodium salt dihydrate as a reducing reagent and stabilizer without any other reagent. The fabricated nano-rGO was systematically evaluated for its application as nano-carrier for pH-sensitive drug delivery. The hemolytic toxicity test indicated the as-prepared nano-rGO had negligible hemolytic activity, which demonstrating its safety in drug delivery system.
View Article and Find Full Text PDF