Enhancers play a critical role in regulating precise gene expression patterns essential for development and cellular identity; however, how gene-enhancer specificity is encoded within the genome is not clearly defined. To investigate how this specificity arises within topologically associated domains (TAD), we performed allele-specific genome editing of sequences surrounding the Lefty1 and Lefty2 paralogs in mouse embryonic stem cells. The Lefty genes arose from a tandem duplication event and these genes interact with each other in chromosome conformation capture assays which place these genes within the same TAD.
View Article and Find Full Text PDFThe uterine muscular layer, or myometrium, undergoes profound changes in global gene expression during its progression from a quiescent state during pregnancy to a contractile state at the onset of labor. In this study, we investigate the role of SOX family transcription factors in myometrial cells and provide evidence for the role of SOX4 in regulating labor-associated genes. We show that Sox4 has elevated expression in the murine myometrium during a term laboring process and in two mouse models of preterm labor.
View Article and Find Full Text PDFWhile numerous cellular proteins in the HIV envelope are known to alter virus infection, methodology to rapidly phenotype the virion surface in a high throughput, single virion manner is lacking. Thus, many human proteins may exist on the virion surface that remain undescribed. Herein, we developed a novel flow virometry screening assay to discover new proteins on the surface of HIV particles.
View Article and Find Full Text PDFSpontaneous uterine contractions are initiated when smooth muscle cells (SMCs) within the uterine muscle, or myometrium, transition from a functionally dormant to an actively contractile phenotype at the end of the pregnancy period. We know that this process is accompanied by gestational time point-specific differences in the SMC transcriptome, which can be modulated by the activator protein 1 (AP-1), nuclear factor kappa beta (NF-κβ), estrogen receptor (ER), and progesterone receptor (PR) transcription factors. Less is known, however, about the additional proteins that might assist these factors in conferring the transcriptional changes observed at labor onset.
View Article and Find Full Text PDFHow distal regulatory elements control gene transcription and chromatin topology is not clearly defined, yet these processes are closely linked in lineage specification during development. Through allele-specific genome editing and chromatin interaction analyses of the locus in mouse embryonic stem cells, we found a striking disconnection between transcriptional control and chromatin architecture. We traced nearly all transcriptional activation to a small number of key transcription factor binding sites, whose deletions have no effect on promoter-enhancer interaction frequencies or topological domain organization.
View Article and Find Full Text PDFThe onset of labour is a culmination of a series of highly coordinated and preparatory physiological events that take place throughout the gestational period. In order to produce the associated contractions needed for foetal delivery, smooth muscle cells in the muscular layer of the uterus (i.e.
View Article and Find Full Text PDFEnhancers are -regulatory sequences located distally to target genes. These sequences consolidate developmental and environmental cues to coordinate gene expression in a tissue-specific manner. Enhancer function and tissue specificity depend on the expressed set of transcription factors, which recognize binding sites and recruit cofactors that regulate local chromatin organization and gene transcription.
View Article and Find Full Text PDFDuring gestation, uterine smooth muscle cells transition from a state of quiescence to one of contractility, but the molecular mechanisms underlying this transition at a genomic level are not well-known. To better understand these events, we evaluated the epigenetic landscape of the mouse myometrium during the pregnant, laboring, and postpartum stages. We generated gestational time point-specific enrichment profiles for histone H3 acetylation on lysine residue 27 (H3K27ac), histone H3 trimethylation of lysine residue 4 (H3K4me3), and RNA polymerase II (RNAPII) occupancy by chromatin immunoprecipitation with massively parallel sequencing (ChIP-seq), as well as gene expression profiles by total RNA-sequencing (RNA-seq).
View Article and Find Full Text PDF