The glucocorticoid receptor (GR) is an important anti-cancer target in lymphoid cancers but has been understudied in solid tumors like lung cancer, although glucocorticoids are often given with chemotherapy regimens to mitigate side effects. Here, we identify a dexamethasone-GR mediated anti-cancer response in a subset of aggressive non-small cell lung cancers (NSCLCs) that harbor Serine/Threonine Kinase 11 (STK11/LKB1) mutations. High tumor expression of carbamoyl phosphate synthase 1 (CPS1) was strongly linked to the presence of LKB1 mutations, was the best predictor of NSCLC dexamethasone (DEX) sensitivity ( < 10) but was not mechanistically involved in DEX sensitivity.
View Article and Find Full Text PDFLung cancers are documented to have remarkable intratumoral genetic heterogeneity. However, little is known about the heterogeneity of biophysical properties, such as cell motility, and its relationship to early disease pathogenesis and micrometastatic dissemination. In this study, we identified and selected a subpopulation of highly migratory premalignant airway epithelial cells that were observed to migrate through microscale constrictions at up to 100-fold the rate of the unselected immortalized epithelial cell lines.
View Article and Find Full Text PDFSignaling receptors are internalized and regulated by clathrin-mediated endocytosis (CME). Two clathrin light chain isoforms, CLCa and CLCb, are integral components of the endocytic machinery whose differential functions remain unknown. We report that CLCb is specifically upregulated in non-small-cell lung cancer (NSCLC) cells and is associated with poor patient prognosis.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2017
Clathrin-mediated endocytosis (CME) constitutes the major pathway for uptake of signaling receptors into eukaryotic cells. As such, CME regulates signaling from cell-surface receptors, but whether and how specific signaling receptors reciprocally regulate the CME machinery remains an open question. Although best studied for its role in membrane fission, the GTPase dynamin also regulates early stages of CME.
View Article and Find Full Text PDFSorting nexin (SNX)9 was first discovered as an endocytic accessory protein involved in clathrin-mediated endocytosis. However, recent data suggest that SNX9 is a multifunctional scaffold that coordinates membrane trafficking and remodeling with changes in actin dynamics to affect diverse cellular processes. Here, we review the accumulated knowledge on SNX9 with an emphasis on its recently identified roles in clathrin-independent endocytic pathways, cell invasion, and cell division, which have implications for SNX9 function in human disease, including cancer.
View Article and Find Full Text PDFThe ability of cancer cells to degrade the extracellular matrix and invade interstitial tissues contributes to their metastatic potential. We recently showed that overexpression of sorting nexin 9 (SNX9) leads to increased cell invasion and metastasis in animal models, which correlates with increased SNX9 protein expression in metastases from human mammary cancers. Here, we report that SNX9 expression is reduced relative to neighboring normal tissues in primary breast tumors, and progressively reduced in more aggressive stages of non-small-cell lung cancers.
View Article and Find Full Text PDFDespite current advances in cancer research, metastasis remains the leading factor in cancer-related deaths. Here, we identify sorting nexin 9 (SNX9) as a new regulator of breast cancer metastasis. We detected an increase in SNX9 expression in human breast cancer metastases compared with primary tumors and demonstrated that SNX9 expression in MDA-MB-231 breast cancer cells is necessary to maintain their ability to metastasize in a chick embryo model.
View Article and Find Full Text PDFCyclin A2 is an essential regulator of the cell division cycle through the activation of kinases that participate to the regulation of S phase as well as the mitotic entry. However, whereas its degradation by the proteasome in mid mitosis was thought to be essential for mitosis to proceed, recent observations show that a small fraction of cyclin A2 persists beyond metaphase and is degraded by autophagy. Its implication in the control of cytoskeletal dynamics and cell movement has unveiled its role in the modulation of RhoA activity.
View Article and Find Full Text PDFMetastasis is a multistep process requiring cancer cell signaling, invasion, migration, survival, and proliferation. These processes require dynamic modulation of cell surface proteins by endocytosis. Given this functional connection, it has been suggested that endocytosis is dysregulated in cancer.
View Article and Find Full Text PDFWe have previously demonstrated that Cyclin A2 is involved in cytoskeletal dynamics, epithelial-mesenchymal transition (EMT) and metastasis. This phenotype was potentiated by activated oncogenic H-Ras. However, the mechanisms governing EMT in these cells have not yet been elucidated.
View Article and Find Full Text PDFWhile targeting experiments carried out on the genes encoding many cell cycle regulators have challenged our views of cell cycle control, they also suggest that redundancy might not be the only explanation for the observed perplexing phenotypes. Indeed, several observations hint at functions of cyclins and CDK inhibitors that cannot be accounted for by their sole role as kinase regulators. They are found involved in many cellular transactions, depending or not on CDKs that are not directly linked to cell cycle control, but participating to general mechanisms such as transcription, DNA repair or cytoskeleton dynamics.
View Article and Find Full Text PDFOur previous work showed that Cyclin A2 deficiency promotes cell invasion in fibroblasts. Given that the majority of cancers emerge from epithelia, we explored novel functions for Cyclin A2 by depleting it in normal mammary epithelial cells. This caused an epithelial to mesenchymal transition (EMT) associated with loss of cell-to-cell contacts, decreased E-Cadherin expression and increased invasive properties characterized by a reciprocal regulation of RhoA and RhoC activities, where RhoA-decreased activity drove cell invasiveness and E-Cadherin delocalization, and RhoC-increased activity only supported cell motility.
View Article and Find Full Text PDFAbstract Cyclin A2 belongs to the core cell cycle regulators and participates in the control of both S phase and mitosis. However, several observations suggest that it is also endowed with other functions, and our recent data shed light on its involvement in cytoskeleton dynamic and cell motility. From the transcription of its gene to its posttranslational modifications, cyclin A2 regulation reveals the complexity of the regulatory network shaping cell cycle progression.
View Article and Find Full Text PDFCell cycle regulators, such as cyclins, are often upregulated in many proliferative disorders, and Cyclin A2 is generally considered as a marker of aggressive cancers. Our recent work, which revealed decreased expression of Cyclin A2 upon metastasis of colorectal cancer, suggests a more complicated situation. Consistent with this, we identified a role for Cyclin A2, via RhoA, in regulation of the actin cytoskeleton and the control of cell invasion.
View Article and Find Full Text PDFCyclin A2 plays a key role in cell cycle regulation. It is essential in embryonic cells and in the hematopoietic lineage yet dispensable in fibroblasts. In this paper, we demonstrate that Cyclin A2-depleted cells display a cortical distribution of actin filaments and increased migration.
View Article and Find Full Text PDFCyclin A2 is essential at two critical points in the somatic cell cycle: during S phase, when it activates CDK2, and during the G2 to M transition when it activates CDK1. Based on the crystal structure of Cyclin A2 in association with CDKs, we generated a panel of mutants to characterize the specific amino acids required for partner binding, CDK activation and subcellular localization. We find that CDK1, CDK2, p21, p27 and p107 have overlapping but distinct requirements for association with this protein.
View Article and Find Full Text PDF