Microsomal cytochromes P450 (P450) require two electrons and two protons for the oxidation of substrates. Although the two electrons can be provided by cytochrome P450 reductase, the second electron can also be donated by cytochrome b5 (b5). The steady-state activity of P450 2B4 is increased up to 10-fold by b5.
View Article and Find Full Text PDFHuman cytochrome P450 17A1 is required for all androgen biosynthesis and is the target of abiraterone, a drug used widely to treat advanced prostate cancer. P450 17A1 catalyzes both 17-hydroxylation and subsequent 17,20-lyase reactions with pregnenolone, progesterone, and allopregnanolone. The presence of cytochrome b5 (b5) markedly stimulates the 17,20-lyase reaction, with little effect on 17-hydroxylation; however, the mechanism of this b5 effect is not known.
View Article and Find Full Text PDFCrystallographic studies have shown that the F429H mutation of cytochrome P450 2B4 introduces an H-bond between His429 and the proximal thiolate ligand, Cys436, without altering the protein fold but sharply decreases the enzymatic activity and stabilizes the oxyferrous P450 2B4 complex. To characterize the influence of this hydrogen bond on the states of the catalytic cycle, we have used radiolytic cryoreduction combined with electron paramagnetic resonance (EPR) and (electron-nuclear double resonance (ENDOR) spectroscopy to study and compare their characteristics for wild-type (WT) P450 2B4 and the F429H mutant. (i) The addition of an H-bond to the axial Cys436 thiolate significantly changes the EPR signals of both low-spin and high-spin heme-iron(III) and the hyperfine couplings of the heme-pyrrole (14)N but has relatively little effect on the (1)H ENDOR spectra of the water ligand in the six-coordinate low-spin ferriheme state.
View Article and Find Full Text PDFPreviously, we constructed, expressed, and purified 46 charge-reversal mutants of yeast cytochrome c peroxidase (CcP) and determined their electronic absorption spectra, their reaction with H2O2, and their steady-state catalytic properties [ Pearl , N. M. et al.
View Article and Find Full Text PDFMultidomain enzymes often rely on large conformational motions to function. However, the conformational setpoints, rates of domain motions and relationships between these parameters and catalytic activity are not well understood. To address this, we determined and compared the conformational setpoints and the rates of conformational switching between closed unreactive and open reactive states in four mammalian diflavin NADPH oxidoreductases that catalyze important biological electron transfer reactions: cytochrome P450 reductase, methionine synthase reductase and endothelial and neuronal nitric oxide synthase.
View Article and Find Full Text PDFThe structural basis of the regulation of microsomal cytochrome P450 (P450) activity was investigated by mutating the highly conserved heme binding motif residue, Phe429, on the proximal side of cytochrome P450 2B4 to a histidine. Spectroscopic, pre-steady-state and steady-state kinetic, thermodynamic, theoretical, and structural studies of the mutant demonstrate that formation of an H-bond between His429 and the unbonded electron pair of the Cys436 axial thiolate significantly alters the properties of the enzyme. The mutant lost >90% of its activity; its redox potential was increased by 87 mV, and the half-life of the oxyferrous mutant was increased ∼37-fold.
View Article and Find Full Text PDFThe crystal structure of NADPH-cytochrome P450 reductase (CYPOR) implies that a large domain movement is essential for electron transfer from NADPH via FAD and FMN to its redox partners. To test this hypothesis, a disulfide bond was engineered between residues Asp(147) and Arg(514) in the FMN and FAD domains, respectively. The cross-linked form of this mutant protein, designated 147CC514, exhibited a significant decrease in the rate of interflavin electron transfer and large (≥90%) decreases in rates of electron transfer to its redox partners, cytochrome c and cytochrome P450 2B4.
View Article and Find Full Text PDFForty-six charge-reversal mutants of yeast cytochrome c peroxidase (CcP) have been constructed in order to determine the effect of localized charge on the catalytic properties of the enzyme. The mutants include the conversion of all 20 glutamate residues and 24 of the 25 aspartate residues in CcP, one at a time, to lysine residues. In addition, two positive-to-negative charge-reversal mutants, R31E and K149D, are included in the study.
View Article and Find Full Text PDFFifteen single-site charge-reversal mutations of yeast cytochrome c peroxidase (CcP) have been constructed to determine the effect of localized charge on the catalytic properties of the enzyme. The mutations are located on the front face of CcP, near the cytochrome c binding site identified in the crystallographic structure of the yeast cytochrome c-CcP complex [Pelletier, H., and Kraut, J.
View Article and Find Full Text PDF