Acta Crystallogr D Struct Biol
June 2023
The Collaborative Computational Project No. 4 (CCP4) is a UK-led international collective with a mission to develop, test, distribute and promote software for macromolecular crystallography. The CCP4 suite is a multiplatform collection of programs brought together by familiar execution routines, a set of common libraries and graphical interfaces.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
April 2023
Acta Crystallogr D Struct Biol
September 2022
Nowadays, progress in the determination of three-dimensional macromolecular structures from diffraction images is achieved partly at the cost of increasing data volumes. This is due to the deployment of modern high-speed, high-resolution detectors, the increased complexity and variety of crystallographic software, the use of extensive databases and high-performance computing. This limits what can be accomplished with personal, offline, computing equipment in terms of both productivity and maintainability.
View Article and Find Full Text PDFDesigning peptides that fold and assemble in response to metal ions tests our understanding of how peptide folding and metal binding influence one another. Here, histidine residues are introduced into the hydrophobic core of a coiled-coil trimer, generating a peptide that self-assembles upon the addition of metal ions. HisAD, the resulting peptide, is unstructured in the absence of metal and folds selectively to form an α-helical construct upon complexation with Cu(ii) and Ni(ii) but not Co(ii) or Zn(ii).
View Article and Find Full Text PDFMycobacterium tuberculosis (Mtb), the main causative agent of tuberculosis (TB), is naturally resistant to β-lactam antibiotics due to the production of the extended spectrum β-lactamase BlaC. β-Lactam/β-lactamase inhibitor combination therapies can circumvent the BlaC-mediated resistance of Mtb and are promising treatment options against TB. However, still little is known of the exact mechanism of BlaC inhibition by the β-lactamase inhibitors currently approved for clinical use, clavulanic acid, sulbactam, tazobactam, and avibactam.
View Article and Find Full Text PDFGroup A Streptococcus (GAS; ) causes a wide range of infections, including pharyngitis, impetigo, and necrotizing fasciitis, and results in over half a million deaths annually. GAS ScpC (SpyCEP), a 180-kDa surface-exposed, subtilisin-like serine protease, acts as an essential virulence factor that helps evade the innate immune response by cleaving and inactivating C-X-C chemokines. ScpC is thus a key candidate for the development of a vaccine against GAS and other pathogenic streptococcal species.
View Article and Find Full Text PDFDetermining macromolecular structures from X-ray data with resolution worse than 3 Å remains a challenge. Even if a related starting model is available, its incompleteness or its bias together with a low observation-to-parameter ratio can render the process unsuccessful or very time-consuming. Yet, many biologically important macromolecules, especially large macromolecular assemblies, membrane proteins and receptors, tend to provide crystals that diffract to low resolution.
View Article and Find Full Text PDFActa Crystallogr D Struct Biol
February 2018
The CCP4 (Collaborative Computational Project, Number 4) software suite for macromolecular structure determination by X-ray crystallography groups brings together many programs and libraries that, by means of well established conventions, interoperate effectively without adhering to strict design guidelines. Because of this inherent flexibility, users are often presented with diverse, even divergent, choices for solving every type of problem. Recently, CCP4 introduced CCP4i2, a modern graphical interface designed to help structural biologists to navigate the process of structure determination, with an emphasis on pipelining and the streamlined presentation of results.
View Article and Find Full Text PDFTranscription-blocking DNA lesions are removed by transcription-coupled nucleotide excision repair (TC-NER) to preserve cell viability. TC-NER is triggered by the stalling of RNA polymerase II at DNA lesions, leading to the recruitment of TC-NER-specific factors such as the CSA-DDB1-CUL4A-RBX1 cullin-RING ubiquitin ligase complex (CRL). Despite its vital role in TC-NER, little is known about the regulation of the CRL complex during TC-NER.
View Article and Find Full Text PDFLegionella pneumophila is a pathogen, causing severe pneumonia in humans called Legionnaires' disease. AnkC (LegA12) is a poorly characterized 495-residue effector protein conserved in multiple Legionella species. Here, we report the crystal structure of a C-terminally truncated AnkC (2-384) at 3.
View Article and Find Full Text PDFThe rise of multi- and even totally antibiotic resistant forms of Mycobacterium tuberculosis underlines the need for new antibiotics. The pathogen is resistant to β-lactam compounds due to its native serine β-lactamase, BlaC. This resistance can be circumvented by administration of a β-lactamase inhibitor.
View Article and Find Full Text PDFSingle-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the 'Einstein from random noise' problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures.
View Article and Find Full Text PDFThe conversion of l-alanine (L-Ala) into d-alanine (D-Ala) in bacteria is performed by pyridoxal phosphate-dependent enzymes called alanine racemases. D-Ala is an essential component of the bacterial peptidoglycan and hence required for survival. The Gram-positive bacterium Streptomyces coelicolor has at least one alanine racemase encoded by alr.
View Article and Find Full Text PDFC1-inhibitor is a key inhibitor of the complement and contact activation systems, and mutations in the protein can cause hereditary angioedema. Through an unknown mechanism, polysaccharides can increase C1-inhibitor activity against some of its target proteases. Here we present the crystal structures of the serine protease inhibitor (serpin) domain of active C1-inhibitor by itself and in complex with dextran sulfate.
View Article and Find Full Text PDFSso10a proteins are small DNA-binding proteins expressed by the crenarchaeal model organism Sulfolobus solfataricus. Based on the structure of Sso10a1, which contains a winged helix-turn-helix motif, it is believed that Sso10a proteins function as sequence-specific transcription factors. Here we show that Sso10a1 and Sso10a2 exhibit different distinct DNA-binding modes.
View Article and Find Full Text PDFThe membrane lipid glucosylceramide (GlcCer) is continuously formed and degraded. Cells express two GlcCer-degrading β-glucosidases, glucocerebrosidase (GBA) and GBA2, located in and outside the lysosome, respectively. Here we demonstrate that through transglucosylation both GBA and GBA2 are able to catalyze in vitro the transfer of glucosyl-moieties from GlcCer to cholesterol, and vice versa.
View Article and Find Full Text PDFIt has been demonstrated that the complex of yeast cytochrome c (Cc) and cytochrome c peroxidase (CcP) exists as a delicate equilibrium of a specific, active state and the non-specific, dynamic encounter state. An ortholog of yeast Cc, horse Cc, binds CcP but forms a much more dynamic complex, as demonstrated by NMR spectroscopy. A single conservative mutation of lysine 13 to arginine reduces the dynamics and enhances the specificity.
View Article and Find Full Text PDFThe rapid transfer of electrons in the photosynthetic redox chain is achieved by the formation of short-lived complexes of cytochrome b6f with the electron transfer proteins plastocyanin and cytochrome c6. A balance must exist between fast intermolecular electron transfer and rapid dissociation, which requires the formation of a complex that has limited specificity. The interaction of the soluble fragment of cytochrome f and cytochrome c6 from the cyanobacterium Nostoc sp.
View Article and Find Full Text PDFBiomolecular X-ray structures typically provide a static, time- and ensemble-averaged view of molecular ensembles in crystals. In the absence of rigid-body motions and lattice defects, B-factors are thought to accurately reflect the structural heterogeneity of such ensembles. In order to study the effects of averaging on B-factors, we employ molecular dynamics simulations to controllably manipulate microscopic heterogeneity of a crystal containing 216 copies of villin headpiece.
View Article and Find Full Text PDFDetermining new protein structures from X-ray diffraction data at low resolution or with a weak anomalous signal is a difficult and often an impossible task. Here we propose a multivariate algorithm that simultaneously combines the structure determination steps. In tests on over 140 real data sets from the protein data bank, we show that this combined approach can automatically build models where current algorithms fail, including an anisotropically diffracting 3.
View Article and Find Full Text PDFRepairing damaged DNA is essential for an organism's survival. UV damage endonuclease (UVDE) is a DNA-repair enzyme that can recognize and incise different types of damaged DNA. We present the structure of Sulfolobus acidocaldarius UVDE on its own and in a pre-catalytic complex with UV-damaged DNA containing a 6-4 photoproduct showing a novel 'dual dinucleotide flip' mechanism for recognition of damaged dipyrimidines: the two purines opposite to the damaged pyrimidine bases are flipped into a dipurine-specific pocket, while the damaged bases are also flipped into another cleft.
View Article and Find Full Text PDFPotato serine protease inhibitor (PSPI) constitutes about 22% of the total amount of proteins in potato tubers (cv. Elkana), making it the most abundant protease inhibitor in the plant. PSPI is a heterodimeric double-headed Kunitz-type serine protease inhibitor that can tightly and simultaneously bind two serine proteases by mimicking the substrate of the enzyme with its reactive-site loops.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
January 2012
Cockayne syndrome protein A is one of the main components in mammalian transcription coupled repair. Here, the overproduction, purification and crystallization of human Cockayne syndrome protein A in complex with its interacting partner DNA damage binding protein 1 are reported. The complex was coproduced in insect cells, copurified and crystallized using sitting drops with PEG 3350 and sodium citrate as crystallizing agents.
View Article and Find Full Text PDFAtomic positions obtained by X-ray crystallography are time and space averages over many molecules in the crystal. Importantly, interatomic distances, calculated between such average positions and frequently used in structural and mechanistic analyses, can be substantially different from the more appropriate time-average and ensemble-average interatomic distances. Using crystallographic B-factors, one can deduce corrections, which have so far been applied exclusively to small molecules, to obtain correct average distances as a function of the type of atomic motion.
View Article and Find Full Text PDFActa Crystallogr D Biol Crystallogr
April 2011
This paper describes various components of the macromolecular crystallographic refinement program REFMAC5, which is distributed as part of the CCP4 suite. REFMAC5 utilizes different likelihood functions depending on the diffraction data employed (amplitudes or intensities), the presence of twinning and the availability of SAD/SIRAS experimental diffraction data. To ensure chemical and structural integrity of the refined model, REFMAC5 offers several classes of restraints and choices of model parameterization.
View Article and Find Full Text PDF