Neuromorphic computing based on spikes offers great potential in highly efficient computing paradigms. Recently, several hardware implementations of spiking neural networks based on traditional complementary metal-oxide semiconductor technology or memristors have been developed. However, an interface (called an afferent nerve in biology) with the environment, which converts the analog signal from sensors into spikes in spiking neural networks, is yet to be demonstrated.
View Article and Find Full Text PDFExperimental demonstration of resistive neural networks has been the recent focus of hardware implementation of neuromorphic computing. Capacitive neural networks, which call for novel building blocks, provide an alternative physical embodiment of neural networks featuring a lower static power and a better emulation of neural functionalities. Here, we develop neuro-transistors by integrating dynamic pseudo-memcapacitors as the gates of transistors to produce electronic analogs of the soma and axon of a neuron, with "leaky integrate-and-fire" dynamics augmented by a signal gain on the output.
View Article and Find Full Text PDF