Publications by authors named "Navneeth Ramakrishnan"

Topological Dirac semimetals (TDS) are three-dimensional analogues of graphene, with linear electronic dispersions in three dimensions. Nanoscale confinement of TDSs in thin films is a necessary step toward observing the conventional-to-topological quantum phase transition (QPT) with increasing film thickness, gated devices for electric-field control of topological states, and devices with surface-state-dominated transport phenomena. Thin films can also be interfaced with superconductors (realizing a host for Majorana Fermions) or ferromagnets (realizing Weyl Fermions or T-broken topological states).

View Article and Find Full Text PDF

We predict and demonstrate that a disorder-induced carrier density inhomogeneity causes magnetoresistance (MR) in a two-dimensional electron system. Our experiments on graphene show a quadratic MR persisting far from the charge neutrality point. Effective medium calculations show that for charged impurity disorder, the low-field MR is a universal function of the ratio of carrier density to fluctuations in carrier density, a power law when this ratio is large, in excellent agreement with experiment.

View Article and Find Full Text PDF