Publications by authors named "Navneeta Pathak"

Epithelial wound closure is a complex biological process that relies on the concerted action of activated keratinocytes and dermal fibroblasts to resurface and close the exposed wound. Modulation of cell-cell adhesion junctions is thought to facilitate cellular proliferation and migration of keratinocytes across the wound. In particular, desmosomes, adhesion complexes critical for maintaining epithelial integrity, are downregulated at the wound edge.

View Article and Find Full Text PDF

Ankyloblepharon Ectodermal Dysplasia and Cleft Lip/Palate (AEC) or Hay-Wells Syndrome is an autosomal dominant disorder characterized by a variety of phenotypes in ectodermal derivatives, including severe skin erosions, ankyloblepharon, coarse and wiry hair, scalp dermatitis, and dystrophic nails. AEC is caused by mutations in the gene encoding the TP63 transcription factor, specifically in the Sterile Alpha Motif (SAM) domain. The exact mechanism, however, by which these specific TP63 mutations lead to the observed spectrum of phenotypes is unclear.

View Article and Find Full Text PDF

The p53 tumor suppressor restricts tumorigenesis through the transcriptional activation of target genes involved in cell-cycle arrest and apoptosis. Here, we identify Prl-3 (phosphatase of regenerating liver-3) as a p53-inducible gene. Whereas previous studies implicated Prl-3 in metastasis because of its overexpression in metastatic human colorectal cancer and its ability to promote invasiveness and motility, we demonstrate here that Prl-3 is an important cell-cycle regulator.

View Article and Find Full Text PDF

The contribution of transcriptional activation to the p53 effector functions critical for tumor suppression, apoptosis and cellular senescence, remains unclear because of p53's ability to regulate diverse cellular processes in a transactivation-independent manner. Dissociating the importance of transactivation from other p53 functions, including regulating transcriptional repression, DNA replication, homologous recombination, centrosome duplication, and mitochondrial function, has been difficult because of overlapping motifs for these functions in the amino terminus. To determine the relative contribution of these activities and transactivation to p53 function, we generated knockin mice expressing a p53 mutant lacking domains involved in these transactivation-independent functions, while remaining competent for transactivation through fusion to the Herpes Simplex Virus VP16 transactivation domain.

View Article and Find Full Text PDF