Publications by authors named "Navneet Dwivedi"

The interactions between glycosaminoglycans (GAGs) and proteins are essential in numerous biochemical processes that involve ion-pair interactions. However, there is no evidence of direct and specific interactions between GAGs and collagen proteins in native cartilage. The resolution of solid-state NMR (ssNMR) can offer such information but the detection of GAG interactions in cartilage is limited by the sensitivity of the experiments when C and N isotopes are at natural abundance.

View Article and Find Full Text PDF

Analysis of the chemical composition of gallstones is vital for the etiopathogenesis of gallstone diseases that can ultimately help in the prevention of its formation. In the present study, gallstones from seven different regions of India were analyzed to highlight the major difference in their composition. Also, gallstones of different pathological conditions i.

View Article and Find Full Text PDF

Bone is a living tissue made up of organic proteins, inorganic minerals, and water. The organic component of bone (mainly made up of Type-I collagen) provides flexibility and tensile strength. Solid-state nuclear magnetic resonance (ssNMR) is one of the few techniques that can provide atomic-level structural insights of such biomaterials in their native state.

View Article and Find Full Text PDF

Bone is a dynamic tissue composed of organic proteins (mainly type I collagen), inorganic components (hydroxyapatite), lipids, and water that undergoes a continuous rebuilding process over the lifespan of human beings. Bone mineral is mainly composed of a crystalline apatitic core surrounded by an amorphous surface layer. The supramolecular arrangement of different constituents gives rise to its unique mechanical properties, which become altered in various bone-related disease conditions.

View Article and Find Full Text PDF

Here, we describe a method for obtaining a dynamic nuclear polarization (DNP)-enhanced double-quantum filtered (DQF) two-dimensional (2D) dipolar C-C correlation spectra of bone-tissue material at natural C abundance. DNP-enhanced DQF 2D dipolar C-C spectra were obtained using a few different mixing times of the dipolar-assisted rotational resonance (DARR) scheme and these spectra were compared to a conventional 2D through-space double-quantum (DQ)-single-quantum (SQ) correlation spectrum. While this scheme can only be used for an assignment purpose to reveal the carbon-carbon connectivity within a residue, the DQF C-C dipolar correlation scheme introduced here can be used to obtain longer distance carbon-carbon constraints.

View Article and Find Full Text PDF

Solid-state nuclear magnetic resonance is a promising technique to probe bone mineralization and interaction of collagen protein in the native state. However, many of the developments are hampered due to the low sensitivity of the technique. In this article, we report solid-state nuclear magnetic resonance (NMR) experiments using the newly developed BioSolids CryoProbe™ to access its applicability for elucidating the atomic-level structural details of collagen protein in native state inside the bone.

View Article and Find Full Text PDF