Purpose: Solid crystalline spin probes, such as lithium phthalocyanine (LiPc) and lithium octa-n-butoxynaphthalocyanine (LiNc-BuO), allow repeated oxygen measurement using electron paramagnetic resonance (EPR). Due to their short relaxation times, their use for pulse EPR oxygen imaging is limited. In this study, we developed and tested a new class of solid composite spin probes that modified the relaxation rates R and R of LiPc or LiNc-BuO probes, which allowed pO measurements in the full dynamic (0-760 torr) range.
View Article and Find Full Text PDFPurpose: Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing pancreatic beta cells. Beta cell replacement devices or bioartificial pancreas (BAP) have shown promise in curing T1D and providing long-term insulin independence without the need for immunosuppressants. Hypoxia in BAP devices damages cells and imposes limitations on device dimensions.
View Article and Find Full Text PDFAdvanced hepatocellular carcinoma (HCC) is a lethal disease, with limited therapeutic options. Mixed Lineage Kinase 3 (MLK3) is a key regulator of liver diseases, although its role in HCC remains unclear. Analysis of TCGA databases suggested elevated MAP3K11 (MLK3 gene) expression, and TMA studies showed higher MLK3 activation in human HCCs.
View Article and Find Full Text PDFPurpose: The determination of blood-brain barrier (BBB) integrity and partial pressure of oxygen (pO) in the brain is of substantial interest in several neurological applications. This study aimed to assess the feasibility of using trityl OX071-based pulse electron paramagnetic resonance imaging (pEPRI) to provide a quantitative estimate of BBB integrity and pO maps in mouse brains as a function of neuroinflammatory disease progression.
Methods: Five Connexin-32 (Cx32)-knockout (KO) mice were injected with lipopolysaccharide to induce neuroinflammation for imaging.
Cellular therapies for type-1 diabetes can leverage cell encapsulation to dispense with immunosuppression. However, encapsulated islet cells do not survive long, particularly when implanted in poorly vascularized subcutaneous sites. Here we show that the induction of neovascularization via temporary controlled inflammation through the implantation of a nylon catheter can be used to create a subcutaneous cavity that supports the transplantation and optimal function of a geometrically matching islet-encapsulation device consisting of a twisted nylon surgical thread coated with an islet-seeded alginate hydrogel.
View Article and Find Full Text PDFPurpose: This study aimed to develop a biocompatible oximetric electron paramagnetic resonance (EPR) spin probe with reduced self-relaxation, and sensitivity to oxygen for a higher signal-to-noise ratio and longer relaxation times at high oxygen concentration, compared to the reference spin probe OX071.
Procedures: SOX71 was synthesized by succinylation of the twelve alcohol groups of OX071 spin probe and characterized by EPR at X-Band (9.5 GHz) and at low field (720 MHz).
Type 1 diabetes (T1D) is an autoimmune disease that leads to the loss of insulin-producing beta cells. Bioartificial pancreas (BAP) or beta cell replacement strategies have shown promise in curing T1D and providing long-term insulin independence. Hypoxia (low oxygen concentration) that may occur in the BAP devices due to cell oxygen consumption at the early stages after implantation damages the cells, in addition to imposing limitations to device dimensions when translating promising results from rodents to humans.
View Article and Find Full Text PDFPurpose: Spatial heterogeneity in tumor hypoxia is one of the most important factors regulating tumor growth, development, aggressiveness, metastasis, and affecting treatment outcome. Most solid tumors are known to have hypoxia or low oxygen levels (pO ≤10 torr). Electron paramagnetic resonance oxygen imaging (EPROI) is an emerging oxygen mapping technology.
View Article and Find Full Text PDFTrastuzumab is the first-line therapy for human epidermal growth factor receptor 2-positive (HER2) breast cancer, but often patients develop acquired resistance. Although other agents are in clinical use to treat trastuzumab-resistant (TR) breast cancer; still, the patients develop recurrent metastatic disease. One of the primary mechanisms of acquired resistance is the shedding/loss of the HER2 extracellular domain, where trastuzumab binds.
View Article and Find Full Text PDFThe incidence and mortality of hepatocellular carcinoma (HCC) are on a rise in the Western countries including US, attributed mostly to late detection. Sorafenib has been the first-line FDA-approved drug for advanced unresectable HCC for almost a decade, but with limited efficacy due to the development of resistance. More recently, several other multi-kinase inhibitors (lenvatinib, cabozantinib, regorafenib), human monoclonal antibody (ramucirumab), and immune checkpoint inhibitors (nivolumab, pembrolizumab) have been approved as systemic therapies.
View Article and Find Full Text PDFThe purpose of this study was to assess the natural partial oxygen pressure (pO) of subcutaneous (SC) and intraperitoneal (IP) sites in mice to determine their relative suitability as sites for placement of implants. The pO measurements were performed using oxygen imaging of solid probes using lithium phthalocyanine (LiPc) as the oxygen sensitive material. LiPc is a water-insoluble crystalline probe whose spin-lattice and spin-spin relaxation rates ( and ) are sensitive to the local oxygen concentration.
View Article and Find Full Text PDFMAP4K4 is a Ste20 member and reported to play important roles in various pathologies, including in cancer. However, the mechanism by which MAP4K4 promotes pancreatic cancer is not fully understood. It is suggested that MAP4K4 might function as a cancer promoter via specific downstream target(s) in an organ-specific manner.
View Article and Find Full Text PDFThe transcription factor Glioma-Associated Oncogene Homolog 1 (GLI1) is activated by sonic hedgehog (SHH) cascade and is an established driver of pancreatic ductal adenocarcinoma (PDAC). However, therapies targeting upstream hedgehog signaling have shown little to no efficacy in clinical trials. Here, we identify Mixed Lineage Kinase 3 (MLK3) as a druggable regulator of oncogenic GLI1.
View Article and Find Full Text PDFAberrant activation of Wnt/-catenin axis occurs in several gastrointestinal malignancies due to inactivating mutations of adenomatous polyposis coli (in colorectal cancer) or activating mutations of -catenin itself [in hepatocellular carcinoma (HCC)]. These lead to -catenin stabilization, increase in -catenin/T-cell factor (TCF)-mediated transcriptional activation, and target gene expression, many of which are involved in tumor progression. While studying pharmaceutical agents that can target -catenin in cancer cells, we observed that the plant compound berberine (BBR), a potent activator of AMP-activated protein kinase (AMPK), can reduce -catenin expression and downstream signaling in HCC cells in a dose-dependent manner.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is a leading cause of cancer-related death with a median survival time of 6-12 months. Most patients present with disseminated disease and the majority are offered palliative chemotherapy. With no approved treatment modalities for patients who progress on chemotherapy, we explored the effects of long-term gemcitabine administration on the tumor microenvironment to identify potential therapeutic options for chemorefractory PDAC.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
April 2020
Mixed lineage kinase 3 (MLK3), also known as MAP3K11, was initially identified in a megakaryocytic cell line and is an emerging therapeutic target in cancer, yet its role in immune cells is not known. Here, we report that loss or pharmacological inhibition of MLK3 promotes activation and cytotoxicity of T cells. MLK3 is abundantly expressed in T cells, and its loss alters serum chemokines, cytokines, and CD28 protein expression on T cells and its subsets.
View Article and Find Full Text PDFMitogen-activated protein kinase (MAPK) signaling networks serve to regulate a wide range of physiologic and cancer-associated cell processes. For instance, a variety of oncogenic mutations often lead to hyperactivation of MAPK signaling, thereby enhancing tumor cell proliferation and disease progression. As such, several components of the MAPK signaling network have been proposed as viable targets for cancer therapy.
View Article and Find Full Text PDFThe original version of this Article did not acknowledge Pradeep Sathyanarayana as an author. His affiliation is Center for Molecular Medicine, Maine Medical Center Research Institute, Scarborough, Maine, USA.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) is notorious for its poor survival and resistance to conventional therapies. PI3K signaling is implicated in both disease initiation and progression, and specific inhibitors of selected PI3K p110 isoforms for managing solid tumors are emerging. We demonstrate that increased activation of PI3K signals cooperates with oncogenic Kras to promote aggressive PDAC in vivo.
View Article and Find Full Text PDFMixed lineage kinase 3 (MLK3), a MAP3K member has been envisioned as a viable drug target in cancer, yet its detailed function and signaling is not fully elucidated. We identified that MLK3 tightly associates with an oncogene, PAK1. Mammalian PAK1 being a Ste20 (MAP4K) member, we tested whether it is an upstream regulator of MLK3.
View Article and Find Full Text PDFPancreatic ductal adenocarcinoma (PDAC) remains remarkably lethal with a 5-year survival rate of 8%. This is mainly attributed to the late stage of presentation, as well as widespread resistance to conventional therapy. In addition, PDAC tumors are largely nonimmunogenic, and most patients have displayed incomplete responses to cancer immunotherapies.
View Article and Find Full Text PDFPhosphodiesterase 1C (PDE1C) is expressed in mammalian heart and regulates cardiac functions by controlling levels of second messenger cyclic AMP and cyclic GMP (cAMP and cGMP, respectively). However, molecular mechanisms of cardiac regulation are currently unknown. In this study, we demonstrate that treatment of wild type mice and H9c2 myoblasts with Wy-14,643, a potent ligand of nuclear receptor peroxisome-proliferator activated receptor alpha (PPARα), leads to elevated cardiac mRNA and cardiac PDE1C protein, which correlate with reduced levels of cAMP.
View Article and Find Full Text PDFBreast cancer is a leading cause of cancer mortality. In particular, triple negative breast cancer (TNBC) comprise a heterogeneous group of basal-like tumors lacking estrogen receptor (ERα), progesterone receptor (PR) and HER2 (ErbB2). TNBC represents 15-20% of all breast cancers and occurs frequently in women under 50 years of age.
View Article and Find Full Text PDF