Publications by authors named "Navidbakhsh M"

In this study, a more precise and cost-effective method is used for studying the drug delivery and distribution of magnetic nanoparticles in fluid hyperthermia cancer treatment, and numerical methods are employed to determine the effect of blood circulation on heat transfer and estimate the success of cancer treatment. A combination of numerical, analytical, and experimental researches is being conducted, which illustrates the essential role of numerical methods in medical and biomedical science. Magnetic NanoParticles' distribution and effects of infusion rate on the treatment are also discussed by considering the real distribution of MNPs.

View Article and Find Full Text PDF

Electrospinning is a promising method to fabricate bioengineered scaffolds, thanks to utilizing various types of biopolymers, flexible structures, and also the diversity of output properties. Mechanical properties are one of the major components of scaffold design to fabricate an efficacious artificial substitute for the natural extracellular matrix. Additionally, fiber orientations, as one of the scaffold structural parameters, could play a crucial role in the application of fabricated fibrous scaffolds.

View Article and Find Full Text PDF

Coronavirus and its spread all over the world have been the most challenging crisis in 2020. Hospitals are categorized among the most vulnerable centers due to their presumably highest traffic of this virus. In this study, centrifugal isolation of coronavirus is successfully deployed for purifying hospitals' air using air conditioners and ducts, suggesting an efficient setup.

View Article and Find Full Text PDF

The need for cell and particle sorting in human health care and biotechnology applications is undeniable. Inertial microfluidics has proven to be an effective cell and particle sorting technology in many of these applications. Still, only a limited understanding of the underlying physics of particle migration is currently available due to the complex inertial and impact forces arising from particle-particle and particle-wall interactions.

View Article and Find Full Text PDF

Experimental simulation of cerebrovascular system would be very beneficial tool to evaluate millions of human body cascade sequence. The Circle of Willis (CoW) recently named Cerebral Arterial Circle (CAC) is a main loop structure of cerebral circulatory system which positioned at the cranium base. In this research, we investigate cerebral artery flow pattern in cerebral arteries including afferent, Willisian, and efferent arteries of CAC emphasizing on communicating and connecting arteries which are main routes in CAC and as a risky sites when autoregulation is occurred in terminal parts of middle cerebral arteries (MCAs) by PMMA (Polymethyl methacrylate) chip and high quality camera which depict Sequential images.

View Article and Find Full Text PDF

The simultaneous flow of gas and liquids in large scale conduits is an established approach to enhance the performance of different working systems under critical conditions. On the microscale, the use of gas-liquid flows is challenging due to the dominance of surface tension forces. Here, we present a technique to generate common gas-liquid flows on a centrifugal microfluidic platform.

View Article and Find Full Text PDF

Background: Marfan syndrome (MFS) is a genetic disorder of the connective tissue. It most prominently influences the skeletal, cardiovascular, and ocular systems, but all fibrous connective tissue throughout the body can be affected as well.

Objective: This study aims to investigate a realistic three-dimensional model of an aorta of a specific patient suffering from MFS by considering elastic and hyperelastic materials for the tissue using fluid-structure interaction (FSI).

View Article and Find Full Text PDF

One of the important parts of the cardiac system is aorta which is the fundamental channel and supply of oxygenated blood in the body. Diseases of the aorta represent critical cardiovascular bleakness and mortality around the world. This study aims at investigation of hemodynamic parameters in a two-dimensional axisymmetric model of three-layer grafted aorta using fluid-structure interaction (FSI).

View Article and Find Full Text PDF

It has been indicated that the content and structure of the elastin and collagen of the arterial wall can subject to a significant alteration due to the atherosclerosis. Consequently, a high tissue stiffness, stress, and even damage/rupture are triggered in the arterial wall. Although many studies so far have been conducted to quantify the mechanical properties of the coronary arteries, none of them consider the role of collagen damage of the healthy and atherosclerotic human coronary arterial walls.

View Article and Find Full Text PDF

Background: Intraocular Pressure (IOP) is defined as the pressure of aqueous in the eye. It has been reported that the normal range of IOP should be within the 10-20 mmHg with an average of 15.50 mmHg among the ophthalmologists.

View Article and Find Full Text PDF

The flow of liquids in centrifugal microfluidics is unidirectional and dominated by centrifugal and Coriolis forces (i.e., effective only at T-junctions).

View Article and Find Full Text PDF

Aortic valve (AV) stenosis is described as the deposition of calcium within the valve leaflets. With the growth of stenosis, haemodynamic, mechanical performances of the AV and blood flow through the valve are changed. In this study, we proposed two fluid-structure interaction (FSI) finite element (FE) models.

View Article and Find Full Text PDF

Atherosclerosis enables to alter not only the microstructural but also the physical properties of the arterial walls by plaque forming. Few studies so far have been conducted to calculate the isotropic or anisotropic mechanical properties of the healthy and atherosclerotic human coronary arteries. To date there is a paucity of knowledge on the mechanical response of the arteries under different strain rates.

View Article and Find Full Text PDF

Background And Objective: Numerical modeling of biological structures would be very helpful tool to analyze hundreds of human body phenomena and also diseases diagnosis. One physiologic phenomenon is blood circulatory system and heart hemodynamic performance that can be simulated by utilizing lumped method. In this study, we can predict hemodynamic behavior of one artery of circulatory system (anterior cerebral artery) when disease such as internal carotid artery occlusion is occurred.

View Article and Find Full Text PDF

Although there are some traditional models of the gunshot wounds, there is still a need for more modeling analyses due to the difficulties related to the gunshot wounds to the forehead region of the human skull. In this study, the degree of damage as a consequence of penetrating head injuries due to gunshot wounds was determined using a preliminary finite element (FE) model of the human skull. In addition, the role of polyvinyl alcohol (PVA) sponge, which can be used as an alternative to reinforce the kinetic energy absorption capacity of bulletproof vest and helmet materials, to minimize the amount of skull injury due to penetrating processes was investigated through the FE model.

View Article and Find Full Text PDF

Introduction: In spite the fact that a very small human body surface area is comprised by the eye, its wounds due to detonation have recently been dramatically amplified. Although many efforts have been devoted to measure injury of the globe, there is still a lack of knowledge on the injury mechanism due to Primary Blast Wave (PBW). The goal of this study was to determine the stresses and deformations of the human eye components, including the cornea, aqueous, iris, ciliary body, lens, vitreous, retina, sclera, optic nerve, and muscles, attributed to PBW induced by trinitrotoluene (TNT) explosion via a Lagrangian-Eulerian computational coupling model.

View Article and Find Full Text PDF

Saphenous Vein (SV) due to fatness, age, inactiveness, etc. can be afflicted with varicose. The main reason of the varicose vein is believed to be related to the leg muscle pump which is unable to return the blood to the heart in contradiction of the effect of gravity.

View Article and Find Full Text PDF

Objective: Varicose vein has become enlarged and twisted and, consequently, has lost its mechanical strength. As a result of the varicose saphenous vein (SV) mechanical alterations, the hemodynamic parameters of the blood flow, such as blood velocity as well as vein wall stress and strain, would change accordingly. However, little is known about stress and strain and there consequences under experimental conditions on blood flow and velocity within normal and varicose veins.

View Article and Find Full Text PDF

At the point when the aorta ruptures suddenly, as opposed to as the after-effect of injury, it is for the most part in aortic aneurysm. Aortic aneurysm rupture happens when the wall stress surpasses the strength of the vascular tissue. Intraluminal thrombus (ILT) may have advantages as it can absorb tension and decrease aortic aneurysm wall stress.

View Article and Find Full Text PDF

The stresses induced within plaque tissues and arterial layers during stent expansion inside an atherosclerotic artery can be exceeded from the yield stresses of those tissues and, consequently, lead to plaque or arterial wall rupture. The distribution and magnitude of the stresses in the plaque-artery-stent structure might be distinctly different for different plaque types. In this study, the mechanical properties of six healthy and atherosclerotic human coronary arteries were determined for application in plaque and arterial vulnerability assessment.

View Article and Find Full Text PDF

This study pertains to a six-channel acoustic monitoring system for use in patient monitoring during or after surgery. The base hardware consists of a USB data acquisition system, a custom-built six-channel amplification system, and a series of microphones of various designs. The software is based on the MATLAB platform with data acquisition drivers installed.

View Article and Find Full Text PDF

The skin tissue has been shown to behave like a nonlinear anisotropic material. This study was aimed to employ a constitutive fiber family equation to characterize the nonlinear anisotropic mechanical behavior of the rat and mice skin tissues in different anatomical locations, including the abdomen and back, using histostructural and uniaxial data. The rat and mice skin tissues were excised from the animals' body and then the histological analyses were performed on each skin type to determine the mean fiber orientation angle.

View Article and Find Full Text PDF

Atherosclerosis is considered as the most severe form of cardiovascular diseases as it alters the structure of the elastin and collagen and, consequently, the mechanical properties of the artery wall. The role of collagen fibers orientations in the mechanical properties of the healthy and atherosclerotic human coronary arteries so far has not been well determined. In this study, a fiber family based constitutive equation was employed to address the mechanical behavior of healthy and atherosclerotic human coronary arteries using the combination of histostructural and uniaxial data.

View Article and Find Full Text PDF

Background And Objective: In magnetic fluid hyperthermia therapy, controlling temperature elevation and optimizing heat generation is an immense challenge in practice. The resultant heating configuration by magnetic fluid in the tumor is closely related to the dispersion of particles, frequency and intensity of magnetic field, and biological tissue properties.

Methods: In this study, to solve heat transfer equation, we used COMSOL Multiphysics and to verify the model, an experimental setup has been used.

View Article and Find Full Text PDF

Purpose: In magnetic fluid hyperthermia (MFH), nanoparticles are injected into diseased tissue and subjected to an alternating high frequency magnetic field. The process triggers sufficient heat to destroy the cancerous cells. One of the challenging problems during MFH is blood flow in tissue.

View Article and Find Full Text PDF