Publications by authors named "Navid Bonakdar"

The cell membrane forms a dynamic and complex barrier between the living cell and its environment. However, its studies are difficult because it consists of a high variety of lipids and proteins and is continuously reorganized by the cell. Therefore, membrane model systems with precisely controlled composition are used to investigate fundamental interactions of membrane components under well-defined conditions.

View Article and Find Full Text PDF

Under mechanical loading, most living cells show a viscoelastic deformation that follows a power law in time. After removal of the mechanical load, the cell shape recovers only incompletely to its original undeformed configuration. Here, we show that incomplete shape recovery is due to an additive plastic deformation that displays the same power-law dynamics as the fully reversible viscoelastic deformation response.

View Article and Find Full Text PDF
Article Synopsis
  • Nanoscale vesicles, including liposomes from natural phospholipids and synthetic polymersomes, are gaining traction in life sciences for their customizable properties.
  • The review discusses the role of artificial vesicles as nanoscale bioreactors, emphasizing the challenges in facilitating specific exchanges of substances across compartments in protocell development.
  • Key advancements in incorporating membrane transport proteins into these vesicles are highlighted, presenting opportunities for improved design and functionality in synthetic biology applications.
View Article and Find Full Text PDF

Mutations in the cytoskeletal linker protein plectin result in multisystemic diseases affecting skin and muscle with indications of additional vascular system involvement. To study the mechanisms underlying vascular disorders, we established plectin-deficient endothelial cell and mouse models. We show that apart from perturbing the vimentin cytoskeleton of endothelial cells, plectin deficiency leads to severe distortions of adherens junctions (AJs), as well as tight junctions, accompanied by an upregulation of actin stress fibres and increased cellular contractility.

View Article and Find Full Text PDF

Plectin is the prototype of an intermediate filament (IF)-based cytolinker protein. It affects cells mechanically by interlinking and anchoring cytoskeletal filaments and acts as scaffolding and docking platform for signaling proteins to control cytoskeleton dynamics. The most common disease caused by mutations in the human plectin gene, epidermolysis bullosa simplex with muscular dystrophy (EBS-MD), is characterized by severe skin blistering and progressive muscular dystrophy.

View Article and Find Full Text PDF

The mechanism by which cells sense stresses and transmit them throughout the cytoplasm and the cytoskeleton (CSK) and by which these mechanical signals are converted into biochemical signaling responses is not clear. Specifically, there is little direct experimental evidence on how intracellular CSK structural elements in living cells deform and transmit stresses in response to external mechanical forces. Existing theories have invoked various biophysical and biochemical mechanisms to explain how cells spread, deform, divide, move, and change shape in response to mechanical inputs, but rigorous tests in cells are lacking.

View Article and Find Full Text PDF

The speed of cell migration on 2-dimensional (2D) surfaces is determined by the rate of assembly and disassembly of clustered integrin receptors known as focal adhesions. Different modes of cell migration that have been described in 3D environments are distinguished by their dependence on integrin-mediated interactions with the extra-cellular matrix. In particular, the mesenchymal invasion mode is the most dependent on focal adhesion dynamics.

View Article and Find Full Text PDF

Cell invasion through a dense three-dimensional (3D) matrix is believed to depend on the ability of cells to generate traction forces. To quantify the role of cell tractions during invasion in 3D, we present a technique to measure the elastic strain energy stored in the matrix due to traction-induced deformations. The matrix deformations around a cell were measured by tracking the 3D positions of fluorescent beads tightly embedded in the matrix.

View Article and Find Full Text PDF

Heterozygous mutations of the human desmin gene on chromosome 2q35 cause hereditary and sporadic myopathies and cardiomyopathies. The expression of mutant desmin brings about partial disruption of the extra sarcomeric desmin cytoskeleton and abnormal protein aggregation in the sarcoplasm of striated muscle cells. The precise molecular pathways and sequential steps that lead from a desmin gene defect to progressive muscle damage are still unclear.

View Article and Find Full Text PDF

The 90-kDa isoform of the lipid kinase PIP kinase Type I γ (PIPKIγ) localizes to focal adhesions (FAs), where it provides a local source of phosphatidylinositol 4,5-bisphosphate (PtdIns(4,5)P(2)). Although PtdIns(4,5)P(2) regulates the function of several FA-associated molecules, the role of the FA-specific pool of PtdIns(4,5)P(2) is not known. We report that the genetic ablation of PIPKIγ specifically from FAs results in defective integrin-mediated adhesion and force coupling.

View Article and Find Full Text PDF

Kidney glomeruli function as filters, allowing the passage of small solutes and waste products into the urinary tract, while retaining essential proteins and macromolecules in the blood stream. These structures are under constant mechanical stress due to fluid pressure, driving filtration across the barrier. We mechanically stimulated adherent wildtype podocytes using the methods of magnetic tweezer and twisting as well as cell stretching.

View Article and Find Full Text PDF