Point-of-use treatment technologies can increase access to safe drinking water in rural areas. Sustained use of these technologies is uncommon due to oversight of community needs, user-perceived risks, long-term maintenance, and conflict with traditional practices. Nanosilver-enabled ceramic water filters are unique due to the use of locally sourced materials available at or near the target community; however, technical limitations persist (e.
View Article and Find Full Text PDFOpportunistic pathogens (OPs) are of concern in drinking water distribution systems because they persist despite disinfectant residuals. While many OPs garner protection from disinfectants via a biofilm lifestyle, () also gains disinfection resistance by being harbored within free-living amoebae (FLA). It has been long established, but poorly understood, that grown within FLA show increased infectivity toward subsequent FLA or human cells (i.
View Article and Find Full Text PDFAchieving sustainable agricultural productivity and global food security are two of the biggest challenges of the new millennium. Addressing these challenges requires innovative technologies that can uplift global food production, while minimizing collateral environmental damage and preserving the resilience of agroecosystems against a rapidly changing climate. Nanomaterials with the ability to encapsulate and deliver pesticidal active ingredients (AIs) in a responsive (for example, controlled, targeted and synchronized) manner offer new opportunities to increase pesticidal efficacy and efficiency when compared with conventional pesticides.
View Article and Find Full Text PDFExtensive use of per- and polyfluoroalkyl substances (PFAS) has caused their ubiquitous presence in natural waters. One of the standard practices for PFAS removal from water is adsorption onto granular activated carbon (GAC); however, this approach generates a new waste stream, i.e.
View Article and Find Full Text PDFAquaculture is the fastest growing food-production sector and is vital to food security, habitat restoration and endangered species conservation. One of the continued challenges to the industry is our ability to manage aquatic disease agents that can rapidly decimate operations and are a constant threat to sustainability. Such threats also evolve as microbes acquire resistance and/or new pathogens emerge.
View Article and Find Full Text PDFThe along the United States-Mexico border are generally self-built neighborhoods of low-income families that lack basic infrastructure. While some government assistance has provided roads and electricity, water and wastewater services are still lacking in many . This research is the first to collect a comprehensive dataset on water, sanitation, health, and living conditions in these unincorporated neighborhoods through collection of water samples and surveys; 114 households in 23 across three geographically diverse Texas counties are studied.
View Article and Find Full Text PDFFew-layered molybdenum disulfide (MoS) nanosheets are poised to be at the core of low-voltage electronic device development. Upon environmental release, these two-dimensional (2D) structures can interact with abundant natural geocolloids. This study probes the role of dimensionality in modulating the aggregation behavior of 2D MoS nanosheets with plate-like geocolloids (i.
View Article and Find Full Text PDFAlloys or smelted metal mixtures have served as cornerstones of human civilization. The advent of smelted copper and tin, , bronze, in the 4 millennium B.C.
View Article and Find Full Text PDFGrowing use of carbon nanotubes (CNTs) have garnered concerns regarding their association with adverse health effects. Few studies have probed how CNTs affect a host's susceptibility to pathogens, particularly respiratory viruses. We reported that exposure of lung cells and mice to pristine single-walled CNTs (SWCNTs) leads to significantly increased influenza virus H1N1 strain A/Mexico/4108/2009 (IAV) titers in concert with repressed antiviral immune responses.
View Article and Find Full Text PDFThe increasing prevalence of carbon nanotubes (CNTs) as components of new functional materials has the unintended consequence of causing increases in CNT concentrations in aqueous environments. Aqueous systems are reservoirs for bacteria, including human and animal pathogens, that can form biofilms. At high concentrations, CNTs have been shown to display biocidal effects; however, at low concentrations, the interaction between CNTs and bacteria is more complicated, and antimicrobial action is highly dependent upon the properties of the CNTs in suspension.
View Article and Find Full Text PDFMany of the six million residents of unincorporated communities in the United States depend on well-water to meet their needs. One group of unincorporated communities is the colonias, located primarily in several southwestern U.S.
View Article and Find Full Text PDFMicroplastic particles and fibers are increasingly being detected in our surface and ground waters as well as within a wide range of aquatic species. Their presence in the environment is largely due to in situ generation from physical and chemical weathering of larger plastics, and thus has left environmental community concerned in the post-banned era of microbead use in personal care products through the passage of Microbead-Free Waters Act in the United States. To improve understanding of secondary microplastic formation, accelerated weathering has been conducted on four materials (high-density polyethylene, high impact polystyrene, nylon 6, and polypropylene) under ultraviolet radiation (equivalent to 44 days in full sun) in simulated seawater.
View Article and Find Full Text PDFCannabinoids are incipient contaminants with limited literature in the context of water treatment. With increasing positive public opinion toward legalization and their increasing use as a pharmaceutical, cannabinoids are expected to become a critical class of pollutant that requires attention in the water treatment industry. The destructive removal of cannabinoids via chlorination and other oxidation processes used in drinking water and wastewater treatment requires careful investigation, because the oxidation and disinfection byproducts (DBPs) may pose significant risks for public health and the environment.
View Article and Find Full Text PDFThe availability of safe water for potable purposes in Alaska Native communities is limited due to naturally occurring metals and contaminants released from anthropogenic activities, such as drilling and mining. The impacts of climate change are magnified in the arctic and sub-arctic regions and thus have the potential to mobilize contaminants and exacerbate the water contamination problem. Alaska Native communities are vulnerable to such changes in their water quality because of their remote location and limited access to resources.
View Article and Find Full Text PDFExposure of lung cells or mice to single-walled carbon nanotubes (SWCNTs) directly to the respiratory tract leads to a reduced host anti-viral immune response to infection with influenza A virus H1N1 (IAV), resulting in significant increases in viral titers. This suggests that unintended exposure to nanotubes via inhalation may increase susceptibility to notorious respiratory viruses that carry a high social and economic burden globally. However, the molecular mechanisms that contribute to viral susceptibility have not been elucidated.
View Article and Find Full Text PDFNanotechnology has unprecedentedly revolutionized human societies over the past decades and will continue to advance our broad societal goals in the coming decades. The research, development, and particularly the application of engineered nanomaterials have shifted the focus from "less efficient" single-component nanomaterials toward "superior-performance", next-generation multifunctional nanohybrids. Carbon nanomaterials (e.
View Article and Find Full Text PDFFate and transport of carbon nanomaterials can be strongly dependent on the interaction with secondary particulates in the aquatic systems. Bio-particulates in water, e.g.
View Article and Find Full Text PDFExcess phosphate in water is known to cause eutrophication, and its removal is imperative. Nanoclay minerals are widely used in environmental remediation due to their low-cost, adequate availability, environmental compatibility, and adsorption efficiency. However, the removal of anions with nanoclays is not very effective because of electrostatic repulsion from clay surfaces with a net negative charge.
View Article and Find Full Text PDFAs nanomaterials are used in a wide array of applications, investigations regarding health impacts associated with inhalation are a concern. Reports show that exposure to single-walled carbon nanotubes (SWCNTs) can induce fibrosis, allergic-type reactions, and pathogen susceptibility. Airway clearance is known to play a primary role in these disease states, yet SWCNT detection in biological systems is challenging.
View Article and Find Full Text PDFExposure to multi-walled carbon nanotubes (MWCNTs) is suspected to contribute to pulmonary fibrosis through modulation of transforming growth factor beta1 (TGF-β1). There is growing evidence that estrogen signaling is important in pulmonary function and modulates pro-fibrogenic signaling in multiple models of pulmonary fibrosis, however an interaction between MWCNT exposure and estrogen signaling in the lung is not known. The purpose of this work was to determine whether estrogen signaling in the lung is a target for MWCNTs and to identify potential signaling mechanisms mediating MWCNT-induced responses using a whole-body inhalation mouse model and an human lung cell model.
View Article and Find Full Text PDFThe effects of annealing treatment between 400 °C and 540 °C on crystallization behavior, grain size, electrochemical (EC) and photoelectrochemical (PEC) oxygen evolution reaction (OER) performances of bismuth vanadate (BiVO) thin films are investigated in this work. The results show that higher temperature leads to larger grain size, improved crystallinity, and better crystal orientation for the BiVO thin film electrodes. Under air-mass 1.
View Article and Find Full Text PDFMultiwalled carbon nanotube-titanium dioxide (MWNT-TiO) nanohybrids (NHs), a promising support for electrocatalysts, have a high likelihood of environmental release. Aggregation of these NHs may or may not be captured by the sum of their component behavior, thus necessitating a systematic evaluation. This study probes the "part-whole question" by systematically evaluating the role of TiO loading (C:Ti molar ratios of 1:0.
View Article and Find Full Text PDFCarbon nanotubes are hybridized with metal crystals to impart multifunctionality into the nanohybrids (NHs). Simple but effective synthesis techniques are desired to form both zero-valent and oxides of different metal species on carbon nanotube surfaces. Sol-gel technique brings in significant advantages and is a viable technique for such synthesis.
View Article and Find Full Text PDFBackground: Numerous toxicological studies have focused on injury caused by exposure to single types of nanoparticles, but few have investigated how such exposures impact a host's immune response to pathogen challenge. Few studies have shown that nanoparticles can alter a host's response to pathogens (chiefly bacteria) but there is even less knowledge of the impact of such particles on viral infections. In this study, we performed experiments to investigate if exposure of mice to single-walled carbon nanotubes (SWCNT) alters immune mechanisms and viral titers following subsequent influenza A virus (IAV) infection.
View Article and Find Full Text PDF