Background & Aims: The presence of myenteric plexitis in the proximal resection margins is a predictive factor of early postoperative recurrence in Crohn's disease. To decipher the mechanisms leading to their formation, T-cell interactions with enteric neural cells were studied in vitro and in vivo.
Methods: T cells close to myenteric neural cells were retrospectively quantified in ileocolonic resections from 9 control subjects with cancer and 20 patients with Crohn's disease.
Although our understanding of the pathophysiology of inflammatory bowel disease (IBD) is increasing, the expanding body of knowledge does not simplify the equation but rather reveals diverse, interconnected, and complex mechanisms in IBD. In addition to immune overactivation, defects in intestinal epithelial barrier (IEB) functioning, dysbiosis, and structural and functional abnormalities of the enteric nervous system are emerging as new elements contributing to the development of IBD. In addition to molecular changes in IBD, enteric glia from patients with Crohn's disease (CD) exhibits the inability to strengthen the IEB; these defects are not observed in patients with ulcerative colitis.
View Article and Find Full Text PDFIntroduction: Repeated acute stress (RASt) is known to be associated with gastrointestinal dysfunctions. However, the mechanisms underlying these effects have not yet been fully understood. While glucocorticoids are clearly identified as stress hormones, their involvement in RASt-induced gut dysfunctions remains unclear, as does the function of glucocorticoid receptors (GR).
View Article and Find Full Text PDFLeucine-rich repeat kinase 2 (LRRK2) gene, which is the gene most commonly associated with Parkinson's disease (PD), is also a susceptibility gene for Crohn's disease, thereby suggesting that LRRK2 may sit at the crossroads of gastrointestinal inflammation, Parkinson's, and Crohn's disease. LRRK2 protein has been studied intensely in both CNS neurons and in immune cells, but there are only few studies on LRRK2 in the enteric nervous system (ENS). LRRK2 is present in ENS ganglia and the existing studies on LRRK2 expression in colonic biopsies from PD subjects have yielded conflicting results.
View Article and Find Full Text PDFBrain-gut axis refers to the bidirectional functional connection between the brain and the gut, which sustains vital functions for vertebrates. This connection also underlies the gastrointestinal (GI) comorbidities associated with brain disorders. Using a mouse model of glioma, based on the orthotopic injection of GL261 cell line in syngeneic C57BL6 mice, we show that late-stage glioma is associated with GI functional alteration and with a shift in the level of some bacterial metabolites in the cecum.
View Article and Find Full Text PDFPlexitis in the proximal margin of intestinal resections are associated with post-operative recurrence of Crohn's disease. To understand their formation, in vitro analyzes were performed. T cells adhered preferentially to neuron and glial cells in mixed primary cultures of enteric nervous system and T cell activation increased their adhesion capacity.
View Article and Find Full Text PDFIt remains unknown what causes inflammatory bowel disease (IBD), including signaling networks perpetuating chronic gastrointestinal inflammation in Crohn's disease (CD) and ulcerative colitis (UC), in humans. According to an analysis of up to 500 patients with IBD and 100 controls, we report that key transcripts of the IL-7 receptor (IL-7R) pathway are accumulated in inflamed colon tissues of severe CD and UC patients not responding to either immunosuppressive/corticosteroid, anti-TNF, or anti-α4β7 therapies. High expression of both IL7R and IL-7R signaling signature in the colon before treatment is strongly associated with nonresponsiveness to anti-TNF therapy.
View Article and Find Full Text PDFNeurogastroenterol Motil
January 2019
Background: Neuroimmune interactions are essential to maintain gut homeostasis and prevent intestinal disorders but so far, the impact of enteric glial cells (EGC) on immune cells remains a relatively unexplored area of research. As a dysregulation of critical cytokines such as interleukine-7 (IL-7) was suggested to exacerbate gut chronic inflammation, we investigated whether EGC could be a source of IL-7 in the gastrointestinal tract.
Methods: Expression of IL-7 in the rat enteric nervous system was analyzed by immunochemistry and Q-PCR.
Am J Physiol Gastrointest Liver Physiol
July 2018
Gone are the days when enteric glial cells (EGC) were considered merely satellites of enteric neurons. Like their brain counterpart astrocytes, EGC express an impressive number of receptors for neurotransmitters and intercellular messengers, thereby contributing to neuroprotection and to the regulation of neuronal activity. EGC also produce different soluble factors that regulate neighboring cells, among which are intestinal epithelial cells.
View Article and Find Full Text PDFBackground: Growing evidence indicates a wide array of cellular remodeling in the mucosal microenvironment during irritable bowel syndrome (IBS), which possibly contributes to pathophysiology and symptom generation. Here, we investigated whether enteric glial cells (EGC) may be altered, and which factors/mechanisms lead to these changes.
Methods: Colonic mucosal biopsies of IBS patients (13 IBS-Constipation [IBS-C]; 10 IBS-Diarrhea [IBS-D]; 11 IBS-Mixed [IBS-M]) and 24 healthy controls (HC) were analyzed.
Neurogastroenterol Motil
August 2017
Background: Intestinal epithelial barrier (IEB) dysfunction plays a critical role in various intestinal disorders affecting infants and children, including the development of food allergies and colitis. Recent studies highlighted the role of probiotics in regulating IEB functions and behavior in adults, but their effects in the newborn remain largely unknown. We therefore characterized in rat pups, the impact of Lactobacillus fermentum CECT 5716 (L.
View Article and Find Full Text PDFEnteric glial cells (EGC) have trophic and neuroregulatory functions in the enteric nervous system, but whether they exert a direct effect on immune cells is unknown. Here, we used co-cultures to show that human EGC can inhibit the proliferation of activated T lymphocytes. Interestingly, EGC from Crohn's patients were effective at one EGC for two T cells whereas EGC from control patients required a ratio of 1:1.
View Article and Find Full Text PDFAm J Physiol Gastrointest Liver Physiol
June 2016
The postnatal period is crucial for the development of gastrointestinal (GI) functions. The enteric nervous system is a key regulator of GI functions, and increasing evidences indicate that 1) postnatal maturation of enteric neurons affect the development of GI functions, and 2) microbiota-derived short-chain fatty acids can be involved in this maturation. Although enteric glial cells (EGC) are central regulators of GI functions, the postnatal evolution of their phenotype remains poorly defined.
View Article and Find Full Text PDFNeural transplantation is a promising therapeutic approach for neurodegenerative diseases; however, many patients receiving intracerebral fetal allografts exhibit signs of immunization to donor antigens that could compromise the graft. In this context, we intracerebrally transplanted mesencephalic pig xenografts into primates to identify a suitable strategy to enable long-term cell survival, maturation, and differentiation. Parkinsonian primates received WT or CTLA4-Ig transgenic porcine xenografts and different durations of peripheral immunosuppression to test whether systemic plus graft-mediated local immunosuppression might avoid rejection.
View Article and Find Full Text PDFAmong the costimulatory factors widely studied in the immune system is the CD28/cytotoxic T-lymphocyte antigen-4 (CTLA4)-CD80/CD86 pathway, which critically controls the nature and duration of the T-cell response. In the brain, up-regulated expression of CD80/CD86 during inflammation has consistently been reported in microglia. However, the role of CD80/CD86 molecules has mainly been studied in a context of microglia-T cell interactions in pathological conditions, while the function of CD80/CD86 in the regulation of intrinsic brain cells remains largely unknown.
View Article and Find Full Text PDFFoetal pig neuroblasts are interesting candidates as a cell source for transplantation, but xenotransplantation in the brain requires the development of adapted immunosuppressive treatments. As systemic administration of high doses of cyclosporine A has side effects and does not protect xenotransplants forever, we focused our work on local control of the host immune responses. We studied the advantage of cotransplanting syngenic mesenchymal stem cells (MSC) with porcine neuroblasts (pNb) in immunocompetent rat striata.
View Article and Find Full Text PDFXenogenic fetal neuroblasts are considered as a potential source of transplantable cells for the treatment of neurodegenerative diseases, but immunological barriers limit their use in the clinic. While considerable work has been performed to decipher the role of the cellular immune response in the rejection of intracerebral xenotransplants, there is much still to learn about the humoral reaction. To this end, the IgG response to the transplantation of fetal porcine neural cells (PNC) into the rat brain was analyzed.
View Article and Find Full Text PDFInduced pluripotent stem cells (iPSCs) offer certain advantages over embryonic stem cells in cell replacement therapy for a variety of neurological disorders. However, reliable procedures, whereby transplanted iPSCs can survive and differentiate into functional neurons, without forming tumors, have yet to be devised. Currently, retroviral or lentiviral reprogramming methods are often used to reprogram somatic cells.
View Article and Find Full Text PDFLewy pathology affects the gastrointestinal tract in Parkinson's disease (PD) and data from recent genetic studies suggest a link between PD and gut inflammation. We therefore undertook the present survey to investigate whether gastrointestinal inflammation occurs in PD patients. Nineteen PD patients and 14 age-matched healthy controls were included.
View Article and Find Full Text PDFCell transplantation has been proposed as a means of replacing specific cell populations lost through neurodegenerative processes such as that seen in Parkinson's or Huntington's diseases. Improvement of the clinical symptoms has been observed in a number of Parkinson and Huntington's patients transplanted with freshly isolated fetal brain tissue but such restorative approach is greatly hampered by logistic and ethical concerns relative to the use of fetal tissue, in addition to potential side effects that remain to be controlled. In this context, stem cells that are capable of self-renewal and can differentiate into neurons, have received a great deal of interest, as demonstrated by the numerous studies based on the transplantation of neural stem/progenitor cells, embryonic stem cells or mesenchymal stem cells into animal models of Parkinson's or Huntington's diseases.
View Article and Find Full Text PDFBesides their therapeutic benefit as cell source, neural stem/progenitor cells (NSPCs) exhibit immunosuppressive properties of great interest for modulating immune response in the central nervous system. To decipher the mechanisms of NSPC-mediated immunosuppression, activated T cells were exposed to NSPCs isolated from fetal rat brains. Analyses revealed that NSPCs inhibited T-cell proliferation and interferon-gamma production in a dose-dependent manner.
View Article and Find Full Text PDFCancer stem cells (CSCs) are thought to be partially responsible for cancer resistance to current therapies and tumor recurrence. Dichloroacetate (DCA), a compound capable of shifting metabolism from glycolysis to glucose oxidation, via an inhibition of pyruvate dehydrogenase kinase was used. We show that DCA is able to shift the pyruvate metabolism in rat glioma CSCs but has no effect in rat neural stem cells.
View Article and Find Full Text PDF