Publications by authors named "Naveen K Mahenderkar"

Lu and Tang claim that the spin-coated films in our study are not epitaxial. They assume that all of the background intensity in the x-ray pole figures of the spin-coated materials is due to randomly oriented grains. There is no evidence for randomly oriented grains in the 2θ x-ray patterns.

View Article and Find Full Text PDF

Spin-coated films, such as photoresists for lithography or perovskite films for solar cells, are either amorphous or polycrystalline. We show that epitaxial films of inorganic materials such as cesium lead bromide (CsPbBr), lead(II) iodide (PbI), zinc oxide (ZnO), and sodium chloride (NaCl) can be deposited onto a variety of single-crystal and single-crystal-like substrates by simply spin coating either solutions of the material or precursors to the material. The out-of-plane and in-plane orientations of the spin-coated films are determined by the substrate.

View Article and Find Full Text PDF

We introduce a simple and inexpensive procedure for epitaxial lift-off of wafer-size flexible and transparent foils of single-crystal gold using silicon as a template. Lateral electrochemical undergrowth of a sacrificial SiO layer was achieved by photoelectrochemically oxidizing silicon under light irradiation. A 28-nanometer-thick gold foil with a sheet resistance of 7 ohms per square showed only a 4% increase in resistance after 4000 bending cycles.

View Article and Find Full Text PDF

Single-crystal Au is an excellent substrate for electrochemical epitaxial growth due to its chemical inertness, but the high cost of bulk Au single crystals prohibits their use in practical applications. Here, we show that ultrathin epitaxial films of Au electrodeposited onto Si(111), Si(100), and Si(110) wafers can serve as an inexpensive proxy for bulk single-crystal Au for the deposition of epitaxial films of cuprous oxide (Cu2O). The Au films range in thickness from 7.

View Article and Find Full Text PDF

Germanium (Ge) is a group IV semiconductor with superior electronic properties compared with silicon, such as larger carrier mobilities and smaller effective masses. It is also a candidate anode material for lithium-ion batteries. Here, a simple, one-step method is introduced to electrodeposit dense arrays of Ge nanowires onto indium tin oxide (ITO) substrates from aqueous solution.

View Article and Find Full Text PDF