Publications by authors named "Naveed Ejaz"

Task-specific dystonia leads to loss of sensorimotor control for a particular motor skill. Although focal in nature, it is hugely disabling and can terminate professional careers in musicians. Biomarkers for underlying mechanism and severity are much needed.

View Article and Find Full Text PDF

What happens once a cortical territory becomes functionally redundant? We studied changes in brain function and behavior for the remaining hand in humans (male and female) with either a missing hand from birth (one-handers) or due to amputation. Previous studies reported that amputees, but not one-handers, show increased ipsilateral activity in the somatosensory territory of the missing hand (i.e.

View Article and Find Full Text PDF

The study of automated video surveillance systems study using computer vision techniques is a hot research topic and has been deployed in many real-world CCTV environments. The main focus of the current systems is higher accuracy, while the assistance of surveillance experts in effective data analysis and instant decision making using efficient computer vision algorithms need researchers' attentions. In this research, to the best of our knowledge, we are the first to introduce a process control technique: for surveillance video data analysis.

View Article and Find Full Text PDF

Musician's dystonia presents with a persistent deterioration of motor control during musical performance. A predominant hypothesis has been that this is underpinned by maladaptive neural changes to the somatotopic organization of finger representations within primary somatosensory cortex. Here, we tested this hypothesis by investigating the finger-specific activity patterns in the primary somatosensory and motor cortex using functional MRI and multivariate pattern analysis in nine musicians with dystonia and nine healthy musicians.

View Article and Find Full Text PDF

It has been proposed that a form of cortical reorganization (changes in functional connectivity between brain areas) can be assessed with resting-state (rs) functional MRI (fMRI). Here, we report a longitudinal data set collected from 19 patients with subcortical stroke and 11 controls. Patients were imaged up to five times over 1 year.

View Article and Find Full Text PDF

How is the primary motor cortex (M1) organized to control fine finger movements? We investigated the population activity in M1 for single finger flexion and extension, using 7T functional magnetic resonance imaging (fMRI) in female and male human participants and compared these results to the neural spiking patterns recorded in two male monkeys performing the identical task. fMRI activity patterns were distinct for movements of different fingers, but were quite similar for flexion and extension of the same finger. In contrast, spiking patterns in monkeys were quite distinct for both fingers and directions, which is similar to what was found for muscular activity patterns.

View Article and Find Full Text PDF

A key question in neuroscience is how cortical organisation relates to experience. Previously we showed that amputees experiencing highly vivid phantom sensations maintain cortical representation of their missing hand (Kikkert et al., 2016).

View Article and Find Full Text PDF

Hand and finger movements are mostly controlled through crossed corticospinal projections from the contralateral hemisphere. During unimanual movements, activity in the contralateral hemisphere is increased while the ipsilateral hemisphere is suppressed below resting baseline. Despite this suppression, unimanual movements can be decoded from ipsilateral activity alone.

View Article and Find Full Text PDF

Following a stroke, mirror movements are unintended movements that appear in the non-paretic hand when the paretic hand voluntarily moves. Mirror movements have previously been linked to overactivation of sensorimotor areas in the non-lesioned hemisphere. In this study, we hypothesized that mirror movements might instead have a subcortical origin, and are the by-product of subcortical motor pathways upregulating their contributions to the paretic hand.

View Article and Find Full Text PDF

Impaired hand function after stroke is a major cause of long-term disability. We developed a novel paradigm that quantifies two critical aspects of hand function, strength, and independent control of fingers (individuation), and also removes any obligatory dependence between them. Hand recovery was tracked in 54 patients with hemiparesis over the first year after stroke.

View Article and Find Full Text PDF

Representational similarity analysis of activation patterns has become an increasingly important tool for studying brain representations. The dissimilarity between two patterns is commonly quantified by the correlation distance or the accuracy of a linear classifier. However, there are many different ways to measure pattern dissimilarity and little is known about their relative reliability.

View Article and Find Full Text PDF

Fine finger movements are controlled by the population activity of neurons in the hand area of primary motor cortex. Experiments using microstimulation and single-neuron electrophysiology suggest that this area represents coordinated multi-joint, rather than single-finger movements. However, the principle by which these representations are organized remains unclear.

View Article and Find Full Text PDF

The objective of the present study is to explore prioritization methods in diagnostic imaging modalities to automatically determine the contents of medical images. In this paper, we propose an efficient prioritization of brain MRI. First, the visual perception of the radiologists is adapted to identify salient regions.

View Article and Find Full Text PDF

Diagnostic hysteroscopy is a popular method for investigating the regions in the female reproductive system. The videos generated by hysteroscopy sessions of patients are recurrently archived in medical libraries. Gynecologists often need to browse these libraries in search of similar cases or for reviewing old videos of a patient.

View Article and Find Full Text PDF

Due to methodological limitations neural function is mostly studied under open-loop conditions. Normally, however, nervous systems operate in closed-loop where sensory input is processed to generate behavioral outputs, which again change the sensory input. Here, we investigate the closed-loop responses of an identified visual interneuron, the blowfly H1-cell, that is part of a neural circuit involved in optomotor flight and gaze control.

View Article and Find Full Text PDF

How do populations of neurons represent a variable of interest? The notion of feature spaces is a useful concept to approach this question: According to this model, the activation patterns across a neuronal population are composed of different pattern components. The strength of each of these components varies with one latent feature, which together are the dimensions along which the population represents the variable. Here we propose a new method to determine the number of feature dimensions that best describes the activation patterns.

View Article and Find Full Text PDF

We propose a method for building a simple electronic nose based on commercially available sensors used to sniff in the market and identify spoiled/contaminated meat stocked for sale in butcher shops. Using a metal oxide semiconductor-based electronic nose, we measured the smell signature from two of the most common meat foods (beef and fish) stored at room temperature. Food samples were divided into two groups: fresh beef with decayed fish and fresh fish with decayed beef.

View Article and Find Full Text PDF

The non-stationary nature and variability of neuronal signals is a fundamental problem in brain-machine interfacing. We developed a brain-machine interface to assess the robustness of different control-laws applied to a closed-loop image stabilization task. Taking advantage of the well-characterized fly visuomotor pathway we record the electrical activity from an identified, motion-sensitive neuron, H1, to control the yaw rotation of a two-wheeled robot.

View Article and Find Full Text PDF