Background: Since the seminal publication of the TCGA consortium in 2013, the molecular classification of endometrial cancer has been widely accepted as a new and powerful tool to better understand the natural history of this malignancy. Adoption of routine molecular classification around the world has been limited. We sought to demonstrate our initial experience in incorporating the four molecular subtypes for endometrioid carcinomas.
View Article and Find Full Text PDFThe ecological and genetic changes that underlie the evolution of host-microbe interactions remain elusive, primarily due to challenges in disentangling the variables that alter microbiome composition. To understand the impact of host habitat, host genetics, and evolutionary history on microbial community structure, we examined gut microbiomes of river- and three cave-adapted morphotypes of the Mexican tetra, , in their natural environments and under controlled laboratory conditions. Field-collected samples were dominated by very few taxa and showed considerable interindividual variation.
View Article and Find Full Text PDFBackground: POLE mutated endometrial carcinomas may represent a subspecific type of tumors harboring a more favorable prognosis. Grade 3 (G3 or high-grade) endometrioid endometrial carcinomas remain a clinical dilemma, with some tumors behaving as the low-grade counterparts and others presenting a more aggressive behavior.
Objectives: To determine the association between POLE mutational status and the overall-survival (OS) and progression-free-survival (PFS) of patients with G3 endometrioid endometrial cancer (EC).
Progress in the nanotechnology field has led to the development of a new class of materials capable of producing a temperature increase triggered by near infrared light. These photothermal nanostructures have been extensively explored in the ablation of cancer cells. Nevertheless, the available data in the literature have exposed that systemically administered nanomaterials have a poor tumor-homing capacity, hindering their full therapeutic potential.
View Article and Find Full Text PDFNano-sized materials have been widely explored in the biomedicine field, especially due to their ability to encapsulate drugs intended to be delivered to cancer cells. However, systemically administered nanomaterials face several barriers that can hinder their tumor-homing capacity. In this way, researchers are now focusing their efforts in developing technologies that can deliver the nanoparticles directly into the tumor tissue.
View Article and Find Full Text PDFEur J Pharm Biopharm
March 2023
Near infrared (NIR) light-responsive nanomaterials hold potential to mediate combinatorial therapies targeting several cancer hallmarks. When irradiated, these nanomaterials produce reactive oxygen species (photodynamic therapy) and/or a temperature increase (photothermal therapy). These events can damage cancer cells and trigger the release of drugs from the nanomaterials' core.
View Article and Find Full Text PDFAdvanced ovarian cancer remains a leading cause of death from gynecologic malignancy. Surgery and, in most cases, platinum-based chemotherapy with or without maintenance with bevacizumab and/or poly-ADP ribose polymerase inhibitors (PARPi) represent the mainstay of treatment, but the disease typically recurs. The treatment of these patients represents a clinical challenge because sequential chemotherapy regimens are often used, with suboptimal outcomes and cumulative toxicity.
View Article and Find Full Text PDFA new deuterium-tritium experimental, DTE2, campaign has been conducted at the Joint European Torus (JET) between August 2021 and late December 2021. Motivated by significant enhancements in the past decade at JET, such as the ITER-like wall and enhanced auxiliary heating power, the campaign achieved a new fusion energy world record and performed a broad range of fundamental experiments to inform ITER physics scenarios and operations. New capabilities in the area of fusion product measurements by nuclear diagnostics were available as a result of a decade long enhancement program.
View Article and Find Full Text PDFThe most performant deuterium-tritium (DT) plasma discharges realized by the Joint European Torus (JET) tokamak in the recent DT campaign have produced neutron yields on the order of 10 n/s. At such high neutron yields, gamma-ray spectroscopy measurements with scintillators are challenging as events from the neutron-induced background often dominate over the signal, leading to a significant fraction of pileup events and instability of the photodetector gain along with the consequent degradation of the reconstructed spectrum. Here, we describe the solutions adopted for the tangential lanthanum bromide spectrometer installed at JET.
View Article and Find Full Text PDFBackground: Trastuzumab deruxtecan (T-DXd) has shown durable antitumor activity in pretreated patients with HER2-positive advanced breast cancer (ABC), but its efficacy has not yet been evaluated in patients with active brain metastases (BMs). DEBBRAH aims to assess T-DXd in patients with HER2-positive or HER2-low ABC and central nervous system involvement.
Methods: This ongoing, five-cohort, phase II study (NCT04420598) enrolled patients with pretreated HER2-positive or HER2-low ABC with stable, untreated, or progressing BMs, and/or leptomeningeal carcinomatosis.
At the time of the first wave of the COVID-19 pandemic, patients with cancer were considered to be at high risk of serious illness and had a higher exposure risk since they needed frequent and nondeferrable hospital visits. Serological tests were not routinely used, and seroprevalence in this population was unknown. A single-center, cross-sectional study was developed to determine the seroprevalence of anti-SARS-CoV-2 antibodies (Abs) in patients with cancer undergoing systemic antineoplastic treatment.
View Article and Find Full Text PDFCoevolution is often considered a major driver of speciation, but evidence for this claim is not always found because diversity might be cryptic. When morphological divergence is low, molecular data are needed to uncover diversity. This is often the case in mites, which are known for their extensive and often cryptic diversity.
View Article and Find Full Text PDFand are two tetraploid wheat species sharing as a common ancestor, and domesticated accessions from both of these allopolyploids exhibit nonbrittle rachis (i.e., nonshattering spikes).
View Article and Find Full Text PDFIntroduction: Mental illness is a global health challenge and continues to rise among minors. Community clinics are well positioned to provide mental health services to young people.
Objective: To assess community clinic front staff awareness of recent legislation mandating access by minors to mental health services and the actual services delivered by these clinics.
Wheat domestication was a milestone in the rise of agrarian societies in the Fertile Crescent. As opposed to the freely dispersing seeds of its tetraploid progenitor wild emmer, the hallmark trait of domesticated wheat is intact, harvestable spikes. During domestication, wheat acquired recessive loss-of-function mutations in the Brittle Rachis 1 genes, both in the A genome (BTR1-A) and B genome (BTR1-B).
View Article and Find Full Text PDFWheat ( spp.) is one of the founder crops that likely drove the Neolithic transition to sedentary agrarian societies in the Fertile Crescent more than 10,000 years ago. Identifying genetic modifications underlying wheat's domestication requires knowledge about the genome of its allo-tetraploid progenitor, wild emmer ( ssp.
View Article and Find Full Text PDFMany antibiotics, chemotherapeutics, crop protection agents and food preservatives originate from molecules produced by bacteria, fungi or plants. In recent years, genome mining methodologies have been widely adopted to identify and characterize the biosynthetic gene clusters encoding the production of such compounds. Since 2011, the 'antibiotics and secondary metabolite analysis shell-antiSMASH' has assisted researchers in efficiently performing this, both as a web server and a standalone tool.
View Article and Find Full Text PDFWe developed a special electrochemical cell enabling quantitative analysis and in situ X-ray nanotomography of metal/electrolyte interfaces subject to corrosion. Using this cell and applying the nodoid model to describe menisci formed on tungsten wires during anodization, the evolution of the electrolyte surface tension, the concentration of reaction products, and the meniscus contact angle were studied. In contrast to the electrowetting effect, where the applied electric field decreases the contact angle of electrolytes, anodization of the tungsten wires increases the contact angle of the meniscus.
View Article and Find Full Text PDFThis paper reports on the procedure developed as the best method to provide an accurate and reliable estimation of the ion temperature T and the toroidal velocity v from Charge-eXchange Recombination Spectroscopy (CXRS) data from intrinsic rotation experiments at the Joint European Torus with the carbon wall. The low impurity content observed in such plasmas, resulting in low active CXRS signal, alongside low Doppler shifts makes the determination of T and v particularly difficult. The beam modulation method will be discussed along with the measures taken to increase photon statistics and minimise errors from the absolute calibration and magneto-hydro-dynamics effects that may impact the CXRS passive emission.
View Article and Find Full Text PDFAim: Development of liposomal formulations of Cuphen, a potent copper-based aquaporin inhibitor with therapeutic potential against melanoma and colon cancer.
Materials & Methods: Cuphen was incorporated into liposomes using the dehydration-rehydration method. The ability of Cuphen to induce cancer cell death was evaluated by MTS and ViaCount assays.
A major locus on the long arm of wheat chromosome 4B controls within-spikelet variation in both grain size and seed dormancy, the latter an important survival mechanism likely eliminated from wild wheat during domestication. Seed dormancy can increase the probability of survival of at least some progeny under unstable environmental conditions. In wild emmer wheat, only one of the two grains in a spikelet germinates during the first rainy season following maturation; and this within-plant variation in seed dormancy is associated with both grain dimension differences and position within the spikelet.
View Article and Find Full Text PDFA low voltage electropolishing of metal wires is attractive for nanotechnology because it provides centimeter long and micrometer thick probes with the tip radius of tens of nanometers. Using X-ray nanotomography we studied morphological transformations of the surface of tungsten wires in a specially designed electrochemical cell where the wire is vertically submersed into the KOH electrolyte. It is shown that stability and uniformity of the probe span is supported by a porous shell growing at the surface of tungsten oxide and shielding the wire surface from flowing electrolyte.
View Article and Find Full Text PDF