We consider communication scenarios where one party sends quantum states of known dimensionality D, prepared with an untrusted apparatus, to another, distant party, who probes them with uncharacterized measurement devices. We prove that, for any ensemble of reference pure quantum states, there exists one such prepare-and-measure scenario and a linear functional W on its observed measurement probabilities, such that W can only be maximized if the preparations coincide with the reference states, modulo a unitary or an antiunitary transformation. In other words, prepare-and-measure scenarios allow one to "self-test" arbitrary ensembles of pure quantum states.
View Article and Find Full Text PDFConstructions of the (global) fractal interpolation functions on standard function spaces got a lot of attention in the last centuries. Motivated by the newly introduced local fractal functions corresponding to a local iterated functions system which is the generalization of the traditional iterated functions system we construct the local non-affine - fractal functions in this article. A few examples of the graphs of these functions are provided.
View Article and Find Full Text PDFWe present a universal mechanism that, acting on any target qubit, propagates it to the state it had T time units before the experiment started. This protocol works by setting the target on a superposition of flight paths, where it is acted on by uncharacterized, but repeatable, quantum operations. Independently of the effect of each of these individual operations on the target, the successful interference of the paths causes it to leap to its past state.
View Article and Find Full Text PDFAnalyses of the genetic bases of plant adaptation to climate changes, using genome-scan approaches, are often conducted on natural populations, under hypothesis of out-crossing reproductive regime. We report here on a study based on diachronic sampling (1980 and 2011) of the autogamous crop species, Oryza sativa and Oryza glaberrima, in the tropical forest and the Sudanian savannah of West Africa. First, using historical meteorological data we confirmed changes in temperatures (+ 1 °C on average) and rainfall regime (less predictable and reduced amount) in the target areas.
View Article and Find Full Text PDFQuantum theory is commonly formulated in complex Hilbert spaces. However, the question of whether complex numbers need to be given a fundamental role in the theory has been debated since its pioneering days. Recently it has been shown that tests in the spirit of a Bell inequality can reveal quantum predictions in entanglement swapping scenarios that cannot be modeled by the natural real-number analog of standard quantum theory.
View Article and Find Full Text PDFResurrection studies are a useful tool to measure how phenotypic traits have changed in populations through time. If these trait modifications correlate with the environmental changes that occurred during the time period, it suggests that the phenotypic changes could be a response to selection. Selfing, through its reduction of effective size, could challenge the ability of a population to adapt to environmental changes.
View Article and Find Full Text PDFAlthough genetic diversity has been recognized as a key component of biodiversity since the first Convention on Biological Diversity (CBD) in 1993, it has rarely been included in conservation policies and regulations. Even less appreciated is the role that ancient and historical DNA (aDNA and hDNA, respectively) could play in unlocking the temporal dimension of genetic diversity, allowing key conservation issues to be resolved, including setting baselines for intraspecies genetic diversity, estimating changes in effective population size (N, and identifying the genealogical continuity of populations. Here, we discuss how genetic information from ancient and historical specimens can play a central role in preserving biodiversity and highlight specific conservation policies that could incorporate such data to help countries meet their CBD obligations.
View Article and Find Full Text PDFAlthough complex numbers are essential in mathematics, they are not needed to describe physical experiments, as those are expressed in terms of probabilities, hence real numbers. Physics, however, aims to explain, rather than describe, experiments through theories. Although most theories of physics are based on real numbers, quantum theory was the first to be formulated in terms of operators acting on complex Hilbert spaces.
View Article and Find Full Text PDFEntanglement detection is one of the most conventional tasks in quantum information processing. While most experimental demonstrations of high-dimensional entanglement rely on fidelity-based witnesses, these are powerless to detect entanglement within a large class of entangled quantum states, the so-called unfaithful states. In this Letter, we introduce a highly flexible automated method to construct optimal tests for entanglement detection given a bipartite target state of arbitrary dimension, faithful or unfaithful, and a set of local measurement operators.
View Article and Find Full Text PDFIn the context of epidemiology, policies for disease control are often devised through a mixture of intuition and brute-force, whereby the set of logically conceivable policies is narrowed down to a small family described by a few parameters, following which linearization or grid search is used to identify the optimal policy within the set. This scheme runs the risk of leaving out more complex (and perhaps counter-intuitive) policies for disease control that could tackle the disease more efficiently. In this article, we use techniques from convex optimization theory and machine learning to conduct optimizations over disease policies described by hundreds of parameters.
View Article and Find Full Text PDFA preparation game is a task whereby a player sequentially sends a number of quantum states to a referee, who probes each of them and announces the measurement result. Many experimental tasks in quantum information, such as entanglement quantification or magic state detection, can be cast as preparation games. In this paper, we introduce general methods to design n-round preparation games, with tight bounds on the performance achievable by players with arbitrarily constrained preparation devices.
View Article and Find Full Text PDFThe standard definition of genuine multipartite entanglement stems from the need to assess the quantum control over an ever-growing number of quantum systems. We argue that this notion is easy to hack: in fact, a source capable of distributing bipartite entanglement can, by itself, generate genuine k-partite entangled states for any k. We propose an alternative definition for genuine multipartite entanglement, whereby a quantum state is genuinely network k-entangled if it cannot be produced by applying local trace-preserving maps over several (k-1)-partite states distributed among the parties, even with the aid of global shared randomness.
View Article and Find Full Text PDFIntroduction: We analyze the activities carried out by primary care (PC) physicians and nurses with respect to smoking cessation and evaluate their self-reported training, knowledge, and behavior.
Methods: A cross-sectional study was conducted including 1514 PC physicians and nurses from June 2016 to March 2017, in Spain. The main variable was Good Practice (GP) in attention to smokers.
One of the most widespread methods to determine if a quantum state is entangled, or to quantify its entanglement dimensionality, is by measuring its fidelity with respect to a pure state. In this Letter, we find a large class of states whose entanglement cannot be detected in this manner; we call them unfaithful. We find that unfaithful states are ubiquitous in information theory.
View Article and Find Full Text PDFWe present a method that allows the study of classical and quantum correlations in networks with causally independent parties, such as the scenario underlying entanglement swapping. By imposing relaxations of factorization constraints in a form compatible with semidefinite programing, it enables the use of the Navascués-Pironio-Acín hierarchy in complex quantum networks. We first show how the technique successfully identifies correlations not attainable in the entanglement-swapping scenario.
View Article and Find Full Text PDFWe propose a funding scheme for theoretical research that does not rely on project proposals, but on recent past scientific productivity. Given a quantitative figure of merit on the latter and the total research budget, we introduce a number of policies to decide the allocation of funds in each grant call. Under some assumptions on scientific productivity, some of such policies are shown to converge, in the limit of many grant calls, to a funding configuration that is close to the maximum total productivity of the whole scientific community.
View Article and Find Full Text PDFPredominantly selfing populations are expected to have reduced effective population sizes due to nonrandom sampling of gametes, demographic stochasticity (bottlenecks or extinction-recolonization), and large scale hitchhiking (reduced effective recombination). Thus, they are expected to display low genetic diversity, which was confirmed by empirical studies. The structure of genetic diversity in predominantly selfing species is dramatically different from outcrossing ones, with populations often dominated by one or a few multilocus genotypes (MLGs) coexisting with several rare genotypes.
View Article and Find Full Text PDFHistory and environment shape crop biodiversity, particularly in areas with vulnerable human communities and ecosystems. Tracing crop biodiversity over time helps understand how rural societies cope with anthropogenic or climatic changes. Exceptionally well preserved ancient DNA of quinoa (Chenopodium quinoa Willd.
View Article and Find Full Text PDFProc Math Phys Eng Sci
September 2018
We study the properties of the set of marginal distributions of infinite translation-invariant systems in the two-dimensional square lattice. In cases where the local variables can only take a small number of possible values, we completely solve the marginal or membership problem for nearest-neighbours distributions ( = 2, 3) and nearest and next-to-nearest neighbours distributions ( = 2). Remarkably, all these sets form convex polytopes in probability space.
View Article and Find Full Text PDFTo identify which principles characterize quantum correlations, it is essential to understand in which sense this set of correlations differs from that of almost-quantum correlations. We solve this problem by invoking the so-called no-restriction hypothesis, an explicit and natural axiom in many reconstructions of quantum theory stating that the set of possible measurements is the dual of the set of states. We prove that, contrary to quantum correlations, no generalized probabilistic theory satisfying the no-restriction hypothesis is able to reproduce the set of almost-quantum correlations.
View Article and Find Full Text PDFIn the version of this Article previously published, there was a typographical error ('4' instead of '2') in the equations relating F and effective population size (N ) in the Methods section 'Genome-wide scan for selection based on temporal differentiation'. The correct equations are given below.[Formula: see text] [Formula: see text].
View Article and Find Full Text PDFRapid phenotypic evolution of quantitative traits can occur within years, but its underlying genetic architecture remains uncharacterized. Here we test the theoretical prediction that genes with intermediate pleiotropy drive adaptive evolution in nature. Through a resurrection experiment, we grew Arabidopsis thaliana accessions collected across an 8-year period in six micro-habitats representative of that local population.
View Article and Find Full Text PDF