Introduction: The gamma analysis used for quality assurance of a complex radiotherapy plan examines the dosimetric equivalence between planned and measured dose distributions within some tolerance. This study explores whether the dosimetric difference is correlated with any radiobiological difference between delivered and planned dose.
Methods: VMAT or IMRT plans optimized for 14 cancer patients were calculated and delivered to a QA device.
Technol Cancer Res Treat
December 2017
Purpose: To assess the quality of cone beam computed tomography images obtained by a robotic arm-based and image-guided small animal conformal radiation therapy device.
Method And Materials: The small animal conformal radiation therapy device is equipped with a 40 to 225 kV X-ray tube mounted on a custom made gantry, a 1024 × 1024 pixels flat panel detector (200 μm resolution), a programmable 6 degrees of freedom robot for cone beam computed tomography imaging and conformal delivery of radiation doses. A series of 2-dimensional radiographic projection images were recorded in cone beam mode by placing and rotating microcomputed tomography phantoms on the "palm' of the robotic arm.
RaySearch RayStation Fallback (FB) planning module can generate an equivalent backup radiotherapy treatment plan facilitating treatment on other linear accelerators. FB plans were generated from the RayStation FB module by simulating the original plan target and organ at risk (OAR) dose distribution and delivered in various backup linear accelerators. In this study, helical tomotherapy (HT) backup plans used in Varian TrueBeam linear accelerator were generated with the RayStation FB module.
View Article and Find Full Text PDFIntroduction: Spatially fractionated radiation therapy (SFRT or grid therapy) has proven to be effective in management of bulky tumors. The aim of this project is to study the therapeutic ratio (TR) of helical Tomotherapy (HT)-based grid therapy using linear-quadratic cell survival model.
Material And Methods: HT-based grid (or HT-GRID) plan was generated using a patient-specific virtual grid pattern of high-dose cylindrical regions using MLCs.
J Appl Clin Med Phys
September 2016
Presence of interfaces between high and low atomic number (Z) materials, often encountered in diagnostic imaging and radiation therapy, leads to radiation dose perturbation. It is characterized by a very narrow region of sharp dose enhancement at the interface. A rapid falloff of dose enhancement over a very short distance from the interface makes the experimental dosimetry nontrivial.
View Article and Find Full Text PDFPurpose: Gold nanoparticles (GNPs) are known to be effective mediators in microwave hyperthermia. Interaction with an electromagnetic field, large surface to volume ratio, and size quantization of nanoparticles (NPs) can lead to increased cell killing beyond pure heating effects. The purpose of this study is to explore the possibility of free radical generation by GNPs in aqueous media when they are exposed to a microwave field.
View Article and Find Full Text PDFThe risk of secondary cancer from radiation treatment remains a concern for long-term breast cancer survivors, especially those treated with radiation at the age younger than 45 years. Treatment modalities optimally maximize the dose delivery to the tumor while minimizing radiation doses to neighboring organs, which can lead to secondary cancers. A new TomoTherapy treatment machine, TomoHDATM, can treat an entire breast with two static but intensity-modulated beams in a slice-by-slice fashion.
View Article and Find Full Text PDF