Publications by authors named "Nautiyal J"

Estrogen accounts for several biological processes in the body; embryo implantation and pregnancy being one of the vital events. This manuscript aims to unearth the nuclear role of Son of sevenless1 (SOS1), its interaction with estrogen receptor alpha (ERα), and signal transducer and activator of transcription 3 (STAT3) in the uterine nucleus during embryo implantation. SOS1, a critical cytoplasmic linker between receptor tyrosine kinase and rat sarcoma virus signaling, translocates into the nucleus via its bipartite nuclear localization signal (NLS) during the 'window of implantation' in pregnant mice.

View Article and Find Full Text PDF

Follicle-stimulating hormone (FSH) and its G protein-coupled receptor, FSHR, represents a paradigm for receptor signaling systems that activate multiple and complex pathways. Classically, FSHR activates Gαs to increase intracellular levels of cAMP, but its ability to activate other G proteins, and β-arrestin-mediated signaling is well documented in many different cell systems. The pleiotropic signal capacity of FSHR offers a mechanism for how FSH drives multiple and dynamic downstream functions in both gonadal and non-gonadal cell types, including distinct diseases, and how signal bias may be achieved at a pharmacological and cell system-specific manner.

View Article and Find Full Text PDF

Breast cancer has the highest incidence and death rate among cancers in women worldwide. In particular, metastatic estrogen receptor negative (ER-) breast cancer and triple-negative breast cancer (TNBC) subtypes have very limited treatment options, with low survival rates. Ubiquitin carboxyl terminal hydrolase L1 (UCHL1), a ubiquitin C-terminal hydrolase belonging to the deubiquitinase (DUB) family of enzymes, is highly expressed in these cancer types, and several key reports have revealed emerging and important roles for UCHL1 in breast cancer.

View Article and Find Full Text PDF

Background: Obesity and vaginal microbiome (VMB) dysbiosis are each risk factors for adverse reproductive and oncological health outcomes in women. Here, we investigated the relationship between obesity, vaginal bacterial composition, local inflammation and bariatric surgery.

Methods: Vaginal bacterial composition assessed by high-throughput sequencing of bacterial 16S rRNA genes and local cytokine levels measured using a multiplexed Magnetic Luminex Screening Assay were compared between 67 obese and 42 non-obese women.

View Article and Find Full Text PDF

Oncolytic viruses (OVs) can trigger profound innate and adaptive immune responses, which have the potential both to potentiate and reduce the activity of OVs. Natural killer (NK) cells can mediate potent anti-viral and anti-tumoral responses, but there are no data on the role of NK cells in oncolytic adenovirus activity. Here, we have used two different oncolytic adenoviruses-the Ad5 E1A CR2-deletion mutant 922-947 (group C) and the chimeric Ad3/Ad11p mutant enadenotucirev (group B)-to investigate the effect of NK cells on overall anti-cancer efficacy in ovarian cancer.

View Article and Find Full Text PDF

Obesity and hyperinsulinemia are known risk factors for endometrial cancer, yet the biological pathways underlying this relationship are incompletely understood. This study investigated protein expression in endometrial cancer and benign tissue and its correlation with obesity and insulin resistance. One hundred and seven women undergoing hysterectomy for endometrial cancer or benign conditions provided a fasting blood sample and endometrial tissue.

View Article and Find Full Text PDF

Although many risk factors could have causal association with endometrial cancer, they are also prone to residual confounding or other biases which could lead to over- or underestimation. This umbrella review evaluates the strength and validity of evidence pertaining risk factors for endometrial cancer. Systematic reviews or meta-analyses of observational studies evaluating the association between non-genetic risk factors and risk of developing or dying from endometrial cancer were identified from inception to April 2018 using PubMed, the Cochrane database and manual reference screening.

View Article and Find Full Text PDF

Unlabelled: Early embryo development and endometrial differentiation are initially independent processes, and synchronization, imposed by a limited window of implantation, is critical for reproductive success. A putative negative regulator of endometrial receptivity is LEFTY2, a member of the transforming growth factor (TGF)-β family. LEFTY2 is highly expressed in decidualizing human endometrial stromal cells (HESCs) during the late luteal phase of the menstrual cycle, coinciding with the closure of the window of implantation.

View Article and Find Full Text PDF

There are clear gaps in our understanding of genes and pathways through which cancer cells facilitate survival strategies as they become chemoresistant. Paclitaxel is used in the treatment of many cancers, but development of drug resistance is common. Along with being an antimitotic agent paclitaxel also activates endoplasmic reticulum (ER) stress.

View Article and Find Full Text PDF

Transcriptional coregulators drive gene regulatory decisions in the transcriptional space. Although transcription factors including all nuclear receptors provide a docking platform for coregulators to bind, these proteins bring enzymatic capabilities to the gene regulatory sites. RIP140 is a transcriptional coregulator essential for several physiological processes, and aberrations in its function may lead to diseased states.

View Article and Find Full Text PDF

Background: Serum & Glucocorticoid Regulated Kinase 1 (SGK1) plays a fundamental role in ion and solute transport processes in epithelia. In the endometrium, down-regulation of SGK1 during the window of receptivity facilitates embryo implantation whereas expression of a constitutively active mutant in the murine uterus blocks implantation.

Methods/results: Here, we report that treatment of endometrial epithelial cells with specific inhibitors of the phosphoinositide 3-kinase (PI3K)/AKT activity pathway results in reciprocal activation of SGK1.

View Article and Find Full Text PDF

RIP140 is a transcriptional coregulator involved in energy homeostasis, ovulation, and mammary gland development. Although conclusive evidence is lacking, reports have implicated a role for RIP140 in breast cancer. Here, we explored the mechanistic role of RIP140 in breast cancer and its involvement in estrogen receptor α (ERα) transcriptional regulation of gene expression.

View Article and Find Full Text PDF

Mechanical ventilation (MV) elicits complex and clinically relevant cellular responses in the lungs. The current study was designed to define the role of the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2), a major regulator of the cellular antioxidant defense system, in the pulmonary response to MV. Nrf2 activity was quantified in ventilated isolated perfused mouse lungs (IPL).

View Article and Find Full Text PDF

Human embryos frequently harbor large-scale complex chromosomal errors that impede normal development. Affected embryos may fail to implant although many first breach the endometrial epithelium and embed in the decidualizing stroma before being rejected via mechanisms that are poorly understood. Here we show that developmentally impaired human embryos elicit an endoplasmic stress response in human decidual cells.

View Article and Find Full Text PDF

Nuclear receptors (NRs) regulate tissue development and function by controlling transcription from distinct sets of genes in response to fluctuating levels of hormones or cues that modulate receptor activity. Such target gene activation or repression depends on the recruitment of coactivators or corepressors that lead to chromatin remodelling in the vicinity of target genes. Similarly to receptors, coactivators and corepressors often serve pleiotropic functions, and Nrip1 (RIP140) is no exception, playing roles in animal development and physiology.

View Article and Find Full Text PDF

Nuclear receptor interacting protein (Nrip1), also known as RIP140, is a co-regulator for nuclear receptors that plays an essential role in ovulation by regulating the expression of the epidermal growth factor-like family of growth factors. Although several studies indicate a role for RIP140 in breast cancer, its role in the development of the mammary gland is unclear. By using RIP140-null and RIP140 transgenic mice, we demonstrate that RIP140 is an essential factor for normal mammary gland development and that it functions by mediating oestrogen signalling.

View Article and Find Full Text PDF

Decidualization renders the endometrium transiently receptive to an implanting blastocyst although the underlying mechanisms remain incompletely understood. Here we show that human endometrial stromal cells (HESCs) rapidly release IL-33, a key regulator of innate immune responses, upon decidualization. In parallel, differentiating HESCs upregulate the IL-33 transmembrane receptor ST2L and other pro-inflammatory mediators before mounting a profound anti-inflammatory response that includes downregulation of ST2L and increased expression of the soluble decoy receptor sST2.

View Article and Find Full Text PDF

We previously reported that mouse strains with lower circulating insulin-like growth factor 1 (IGF1) level at 6 mo have significantly extended longevity. Here we report that strains with lower IGF1 have significantly delayed age of female sexual maturation, measured by vaginal patency (VP). Among strains with normal lifespans (mean lifespan >600 d), delayed age of VP associated with greater longevity (P = 0.

View Article and Find Full Text PDF

One of the most consistent pathological conditions in the gastrointestinal tract with advancing age is malignancy, particularly gastrointestinal cancers, the incidence of which increases sharply with aging. Although the reasons for the age-related rise in colorectal cancer are not fully understood, we hypothesize that aging increases susceptibility of the colon to carcinogen(s)/toxicant(s), leading to an increase in cancer stem-like cells (CSLCs) that express cancer stem cell markers, in the colonic mucosa. The current study demonstrates that aging is associated with increased expression of several colon CSLC markers [CD44, CD166, and aldehyde dehydrogenase 1 (ALDH-1)] and a higher proportion of cells expressing these markers.

View Article and Find Full Text PDF

Although microRNA-21 (miR-21) is emerging as an oncogene and has been shown to target several tumor suppressor genes, including programmed cell death 4 (PDCD4), its precise mechanism of action on cancer stem cells (CSCs) is unclear. Herein, we report that FOLFOX-resistant HCT-116 and HT-29 cells that are enriched in CSCs show a 3- to 7-fold upregulation of pre- and mature miR-21 and downregulation of PDCD4. Likewise, overexpression of miR-21 in HCT-116 cells, achieved through stable transfection, led to the downregulation of PDCD4 and transforming growth factor beta receptor 2 (TGFβR2).

View Article and Find Full Text PDF

Infertility and recurrent pregnancy loss (RPL) are prevalent but distinct causes of reproductive failure that often remain unexplained despite extensive investigations. Analysis of midsecretory endometrial samples revealed that SGK1, a kinase involved in epithelial ion transport and cell survival, is upregulated in unexplained infertility, most prominently in the luminal epithelium, but downregulated in the endometrium of women suffering from RPL. To determine the functional importance of these observations, we first expressed a constitutively active SGK1 mutant in the luminal epithelium of the mouse uterus.

View Article and Find Full Text PDF

Metastatic colorectal cancer remains a serious health concern with poor patient survival. Although 5-Fluorouracil (5-FU) or 5-FU plus oxaliplatin (FOLFOX) is the standard therapy for colorectal cancer, it has met with limited success. Recurrence of the tumor after chemotherapy could partly be explained by the enrichment of the chemo-resistant sub-population of cancer stem cells (CSCs) that possess the ability for self-renewal and differentiation into different lineages in the tumor.

View Article and Find Full Text PDF

We have previously demonstrated that expression of the novel gene schlafen-3 (Slfn-3) correlates with intestinal epithelial cell differentiation (Patel VB, Yu Y, Das JK, Patel BB, Majumdar AP. Biochem Biophys Res Commun 388: 752-756, 2009). The present investigation was undertaken to examine whether Slfn-3 plays a role in regulating differentiation of FOLFOX-resistant (5-fluorouracil + oxaliplatin) colon cancer cells that are highly enriched in cancer stem cells (CSCs).

View Article and Find Full Text PDF

Purpose: Recurrence of colon cancer, which affects nearly 50% of patients treated by conventional therapeutics, is thought to be due to re-emergence of chemotherapy-resistant cancer stem/stem-like cells (CSCs). Therefore, development of therapeutic strategies for targeted elimination of CSCs would be a novel strategy. The current study examines whether difluorinated-curcumin (CDF), a novel analog of the dietary ingredient of curcumin, in combination with 5-fluorouracil and oxaliplatin (5-FU + Ox), the mainstay of colon cancer chemotherapeutic, would be effective in eliminating colon CSCs.

View Article and Find Full Text PDF

Background: Recent evidence suggests that epithelial cancers, including colorectal cancer are driven by a small sub-population of self-renewing, multi-potent cells termed cancer stem cells (CSCs) which are thought to be responsible for recurrence of cancer. One of the characteristics of CSCs is their ability to form floating spheroids under anchorage-independent conditions in a serum-free defined media. The current investigation was undertaken to examine the role of Wnt/beta-catenin pathway in regulating the growth and maintenance of colonospheres.

View Article and Find Full Text PDF