In vivo Nuclear Magnetic Resonance (NMR) spectroscopy has great potential to interpret the biochemical response of organisms to their environment, thus making it an essential tool in understanding toxic mechanisms. However, magnetic susceptibility distortions lead to 1D NMR spectra of living organisms with lines that are too broad to identify and quantify metabolites, necessitating the use of 2D H-C Heteronuclear Single Quantum Coherence (HSQC) as a primary tool. While quantitative 2D HSQC is well established, to our knowledge it has yet to be applied in vivo.
View Article and Find Full Text PDFUltra-high-field NMR spectroscopy requires an increased bandwidth for heteronuclear decoupling, especially in biomolecular NMR applications. Composite pulse decoupling cannot provide sufficient bandwidth at practical power levels, and adiabatic pulse decoupling with sufficient bandwidth is compromised by sideband artifacts. A novel low-power, broadband heteronuclear decoupling pulse is presented that generates minimal, ultra-low sidebands.
View Article and Find Full Text PDFWe present highly robust, optimal control-based shaped pulses designed to replace all 90° and 180° hard pulses in a given pulse sequence for improved performance. Special attention was devoted to ensuring that the pulses can be simply substituted in a one-to-one fashion for the original hard pulses without any additional modification of the existing sequence. The set of four pulses for each nucleus therefore consists of 90° and 180° point-to-point (PP) and universal rotation (UR) pulses of identical duration.
View Article and Find Full Text PDFExisting optimal control protocols for mitigating the effects of relaxation and/or RF inhomogeneity on broadband pulse performance are extended to the more difficult problem of designing robust, refocused, frequency selective excitation pulses. For the demanding case of T(1) and T(2) equal to the pulse length, anticipated signal losses can be significantly reduced while achieving nearly ideal frequency selectivity. Improvements in performance are the result of allowing residual unrefocused magnetization after applying relaxation-compensated selective excitation by optimized pulses (RC-SEBOPs).
View Article and Find Full Text PDFOptimizing pulse performance often requires a compromise between maximizing signal amplitude and minimizing spectral phase errors. We consider methods for the de novo design of universal rotation pulses, applied specifically but not limited to refocusing pulses. Broadband inversion pulses that rotate all magnetization components 180° about a given fixed axis are necessary for refocusing and mixing in high-resolution NMR spectroscopy.
View Article and Find Full Text PDFWe present robust radio frequency (rf) pulses that tolerate a factor of six inhomogeneity in the B₁ field, significantly enhancing the potential of toroid cavity resonators for NMR spectroscopic applications. Both point-to-point (PP) and unitary rotation (UR) pulses were optimized for excitation, inversion, and refocusing using the gradient ascent pulse engineering (GRAPE) algorithm based on optimal control theory. In addition, the optimized parameterization (OP) algorithm applied to the adiabatic BIR-4 UR pulse scheme enabled ultra-short (50 μs) pulses with acceptable performance compared to standard implementations.
View Article and Find Full Text PDFRepresenting NMR pulse shapes by analytic functions is widely employed in procedures for optimizing performance. Insights concerning pulse dynamics can be applied to the choice of appropriate functions that target specific performance criteria, focusing the solution search and reducing the space of possible pulse shapes that must be considered to a manageable level. Optimal control theory can accommodate significantly larger parameter spaces and has been able to tackle problems of much larger scope than more traditional optimization methods.
View Article and Find Full Text PDFUsing optimal control methods, robust broadband excitation pulses can be designed with a defined linear phase dispersion. Applications include increased bandwidth for a given pulse length compared to equivalent pulses requiring no phase correction, selective pulses, and pulses that mitigate the effects of relaxation. This also makes it possible to create pulses that are equivalent to ideal hard pulses followed by an effective evolution period.
View Article and Find Full Text PDFAn optimal control algorithm for mitigating the effects of T(1) and T(2) relaxation during the application of long pulses is derived. The methodology is applied to obtain broadband excitation that is not only tolerant to RF inhomogeneity typical of high resolution probes, but is relatively insensitive to relaxation effects for T(1) and T(2) equal to the pulse length. The utility of designing pulses to produce specific phase in the final magnetization is also presented.
View Article and Find Full Text PDFBackground: Experimental investigation of transcription is still a very labor- and time-consuming process. Only a few transcription initiation scenarios have been studied in detail. The mechanism of interaction between basal machinery and promoter, in particular core promoter elements, is not known for the majority of identified promoters.
View Article and Find Full Text PDFAppl Bioinformatics
December 2006
Promoter Classifier is a package of seven stand-alone Windows-based C++ programs allowing the following basic manipulations with a set of promoter sequences: (i) calculation of positional distributions of nucleotides averaged over all promoters of the dataset; (ii) calculation of the averaged occurrence frequencies of the transcription factor binding sites and their combinations; (iii) division of the dataset into subsets of sequences containing or lacking certain promoter elements or combinations; (iv) extraction of the promoter subsets containing or lacking CpG islands around the transcription start site; and (v) calculation of spatial distributions of the promoter DNA stacking energy and bending stiffness. All programs have a user-friendly interface and provide the results in a convenient graphical form. The Promoter Classifier package is an effective tool for various basic manipulations with eukaryotic promoter sequences that usually are necessary for analysis of large promoter datasets.
View Article and Find Full Text PDFPosition-weight matrices (PWMs) are broadly used to locate transcription factor binding sites in DNA sequences. The majority of existing PWMs provide a low level of both sensitivity and specificity. We present a new computational algorithm, a modification of the Staden-Bucher approach, that improves the PWM.
View Article and Find Full Text PDFMotivation: The subject of our paper is bioinformatics analysis of the distinguishing features of human promoter DNA sequences, in particular of synergetic combinations of core promoter elements therein. We suppose that specific scenarios of transcription initiation are essentially related to various particular implementations of the interaction of basal transcription machinery with promoter DNA, depending on the presence and mutual positioning of core promoter elements.
Results: In addition to the combinations of core promoter elements previously experimentally confirmed [TATA box and Initiator (Inr), Downstream Promoter Element (DPE) and Inr, and TFIIB recognition element (BRE) and TATA box] we propose other alternate synergetic combinations: BRE and Inr, BRE and DPE, and TATA and DPE with respective models.