Publications by authors named "Nauli S"

Article Synopsis
  • Previous research indicated a connection between altered cerebral blood flow (CBF) after severe traumatic brain injury (sTBI) and poor executive function, but the effects on endothelial cells (ECs) and their cilia were not understood.
  • A mouse model of sTBI was used to study changes in CBF, gene expression, and ciliary function in brain ECs through techniques like single cell RNA sequencing.
  • Findings revealed sustained drops in CBF, alterations in EC sub-clusters, early activation of ischemic pathways, and a significant loss of ciliary gene expression and the cilia protein ARL13B in ECs within the first day post-injury, which continued throughout the injury period.
View Article and Find Full Text PDF

Pancreatic cancer remains one of the most lethal cancers, primarily due to its late diagnosis and limited treatment options. This review examines the challenges and potential of using immunotherapy to treat pancreatic cancer, highlighting the role of artificial intelligence (AI) as a promising tool to enhance early detection and monitor the effectiveness of these therapies. By synthesizing recent advancements and identifying gaps in the current research, this review aims to provide a comprehensive overview of how AI and immunotherapy can be integrated to develop more personalized and effective treatment strategies.

View Article and Find Full Text PDF

Cellular signaling is nature's ingenious way for cells to perceive their surroundings and transmit external cues to internal compartments. Due to its critical role in cellular functions, the intricate machinery of molecular signaling has been intensively studied. A diverse arsenal of techniques exists to quantify the molecules involved in these processes.

View Article and Find Full Text PDF

Emerging evidence suggests a significant contribution of primary cilia to cell division and proliferation. MicroRNAs, especially miR-17, contribute to cell cycle regulation and proliferation. Recent investigations have highlighted the dysregulated expression of miR-17 in various malignancies, underlining its potential role in cancer.

View Article and Find Full Text PDF

The human gastrointestinal system is a complex ecosystem crucial for well-being. During sepsis-induced gut injury, the integrity of the intestinal barrier can be compromised. Lipopolysaccharide (LPS), an endotoxin from Gram-negative bacteria, disrupts the intestinal barrier, contributing to inflammation and various dysfunctions.

View Article and Find Full Text PDF

Larger intestinal lipoproteins are more likely to be retained longer in the intestinal wall, allowing more time for their fat to be hydrolyzed and subsequently taken up by the abdominal viscera. Since men generally accumulate more abdominal visceral fat than women, we sought to determine if males produce larger intestinal lipoproteins compared to females. Using the conscious lymph fistula mouse model, we discovered that the male mice indeed produced larger intestinal lipoproteins than the female mice when they were intraduodenally infused with lipid emulsion.

View Article and Find Full Text PDF

Primary cilia from the brain microvascular endothelial cells (ECs) are specialized cell-surface organelles involved in mediating sensory perception, cell signaling, and vascular stability. Immunofluorescence (IF) analysis of human primary brain microvascular ECs reveals two cilia per cell. To confirm the observation of the two-cilia phenotype in human primary brain ECs, ECs isolated from mouse brain were cultured and stained for cilium.

View Article and Find Full Text PDF

Chronic hypoxia may have a huge impact on the cardiovascular and renal systems. Advancements in microscopy, metabolomics, and bioinformatics provide opportunities to identify new biomarkers. In this study, we aimed at elucidating the metabolic alterations in kidney tissues induced by chronic hypoxia using untargeted metabolomic analyses.

View Article and Find Full Text PDF

Although rapamycin is a very effective drug for rodents with polycystic kidney disease (PKD), it is not encouraging in the clinical trials due to the suboptimal dosages compelled by the off-target side effects. We here report the generation, characterization, specificity, functionality, pharmacokinetic, pharmacodynamic and toxicology profiles of novel polycystic kidney-specific-targeting nanoparticles (NPs). We formulated folate-conjugated PLGA-PEG NPs, which can be loaded with multiple drugs, including rapamycin (an mTOR inhibitor) and antioxidant 4-hydroxy-TEMPO (a nephroprotective agent).

View Article and Find Full Text PDF

In this study, we conducted high-throughput spatiotemporal analysis of primary cilia length and orientation across 22 mouse brain regions. We developed automated image analysis algorithms, which enabled us to examine over 10 million individual cilia, generating the largest spatiotemporal atlas of cilia. We found that cilia length and orientation display substantial variations across different brain regions and exhibit fluctuations over a 24-hour period, with region-specific peaks during light-dark phases.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is a progressive neurodegenerative disease with a few FDA-approved drugs that provide modest symptomatic benefits and only two FDA-approved disease-modifying treatments for AD. The advancements in understanding the causative genes and non-coding sequences at the molecular level of the pathophysiology of AD have resulted in several exciting research papers that employed small interfering RNA (siRNA)-based therapy. Although siRNA is being sought by academia and biopharma industries, several challenges still need to be addressed.

View Article and Find Full Text PDF

Introduction Heart failure (HF) is a clinical syndrome with symptoms and/or signs caused by a structural and/or functional cardiac abnormality and corroborated by elevated natriuretic peptide levels and/or objective evidence of pulmonary or systemic congestion. Among HF types, HF with preserved ejection fraction (HFpEF) is the commonest form. However, the diagnosis and management of HFpEF are challenging.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (PKD) is a hereditary kidney disorder which can affect cardiovascular system. Cardiac hypertrophy and cardiomyopathy in PKD have been reported by echocardiography analyses, but histopathology analyses of human PKD hearts have never been examined. The current studies evaluated human heart tissues from five subjects without PKD (non-PKD) and five subjects with PKD.

View Article and Find Full Text PDF

Small-conductance Ca-activated potassium (K2.x) channels are gated exclusively by intracellular Ca. The activation of K2.

View Article and Find Full Text PDF

In the developing vasculature, cilia, microtubule-based organelles that project from the apical surface of endothelial cells (ECs), have been identified to function cell autonomously to promote vascular integrity and prevent hemorrhage. To date, the underlying mechanisms of endothelial cilia formation (ciliogenesis) are not fully understood. Understanding these mechanisms is likely to open new avenues for targeting EC-cilia to promote vascular stability.

View Article and Find Full Text PDF

Nitric oxide synthase (NOS) plays important roles within the cardiovascular system in physiological states as well as in pathophysiologic and specific cardiovascular (CV) disease states, such as hypertension (HTN), arteriosclerosis, and cerebrovascular accidents. This review discusses the roles of the endothelial NOS (eNOS) and its effect on cardiovascular responses that are induced by nociceptive stimuli. The roles of eNOS enzyme in modulating CV functions while experiencing pain will be discussed.

View Article and Find Full Text PDF

Nanoparticles (NPs) have been used in drug delivery therapies, medical diagnostic strategies, and as current Covid-19 vaccine carriers. Many microscope-based imaging systems have been introduced to facilitate detection and visualization of NPs. Unfortunately, none can differentiate the core and the shell of NPs.

View Article and Find Full Text PDF

Cilia, microtubule-based organelles that project from the apical luminal surface of endothelial cells (ECs), are widely regarded as low-flow sensors. Previous reports suggest that upon high shear stress, cilia on the EC surface are lost, and more recent evidence suggests that deciliation-the physical removal of cilia from the cell surface-is a predominant mechanism for cilia loss in mammalian cells. Thus, we hypothesized that EC deciliation facilitated by changes in shear stress would manifest in increased abundance of cilia-related proteins in circulation.

View Article and Find Full Text PDF

Endothelial nitric oxide synthase (eNOS) plays a critical role in regulating and maintaining a healthy cardiovascular system. The importance of eNOS can be emphasized from the genetic polymorphisms of the eNOS gene, uncoupling of eNOS dimerization, and its numerous signaling regulations. The activity of eNOS on the cardiac myocytes, vasculature, and the central nervous system are discussed.

View Article and Find Full Text PDF
Article Synopsis
  • Monoclonal antibodies (mAbs) are engineered medications increasingly used to target specific receptors for treating a variety of diseases, including autoimmune disorders and cancers.
  • The review aims to classify mAbs based on system diseases, providing concise synopses of their pharmacological profiles, mechanisms of action, clinical uses, and side effects.
  • It will cover specific mAbs like Abciximab and Bevacizumab for cardiovascular issues, Denosumab for musculoskeletal disorders, and various mAbs for autoimmune diseases and tumors, as well as IL-6 antagonists being explored for COVID-19 treatment.
View Article and Find Full Text PDF

Ciliary extracellular vesicles (ciEVs), released from primary cilia, contain functional proteins that play an important role in cilia structure and functions. We have recently shown that ciEVs and cytosolic extracellular vesicles (cyEVs) have unique and distinct biomarkers. While ciEV biomarkers have shown some interactions with known ciliary proteins, little is known about the interaction of ciEV proteins with proteins involved in ciliopathy and neurodegenerative disorders.

View Article and Find Full Text PDF

Autosomal dominant polycystic kidney disease (PKD) is a hereditary disorder affecting multiple organs, including the heart. PKD has been associated with many cardiac abnormalities including the arrhythmogenic remodeling in clinical evaluations. In our current study, we hypothesized that gene mutation results in structural and functional defects in the myocardium.

View Article and Find Full Text PDF

The melanin-concentrating hormone (MCH) system is involved in numerous functions, including energy homeostasis, food intake, sleep, stress, mood, aggression, reward, maternal behavior, social behavior, and cognition. In rodents, MCH acts on MCHR1, a G protein-coupled receptor, which is widely expressed in the brain and abundantly localized to neuronal primary cilia. Cilia act as cells' antennas and play crucial roles in cell signaling to detect and transduce external stimuli to regulate cell differentiation and migration.

View Article and Find Full Text PDF
Article Synopsis
  • Almost all brain cells have primary cilia, which are essential sensory organelles that help with brain formation during development and function as signaling hubs in the adult brain.
  • A study analyzed cilia gene expression across 16 brain regions throughout human life, revealing that 67% of the cilia-related genes change with age, showing patterns specific to different brain areas.
  • Findings indicate that many cilia genes are upregulated with age, particularly components related to cilia structure, and highlight the relationship between cilia expression and age-related neurological disorders.
View Article and Find Full Text PDF

Extracellular vesicles (EVs) are cell-derived membrane vesicles that are released into the extracellular space. EVs encapsulate key proteins and mediate intercellular signalling pathways. Recently, primary cilia have been shown to release EVs under fluid-shear flow, but many proteins encapsulated in these vesicles have never been identified.

View Article and Find Full Text PDF