Publications by authors named "Naughton K"

Lung cancer is the leading cause of cancer-related death worldwide, with poor outcomes even for those diagnosed at early stages. Current standard-of-care for most non-small cell lung cancer (NSCLC) patients involves an array of chemotherapy, radiotherapy, immunotherapy, targeted therapy, and surgical resection depending on the stage and location of the cancer. While patient outcomes have certainly improved, advances in highly personalized care remain limited.

View Article and Find Full Text PDF

Transformed lung organoids have extensive applications in lung cancer modeling and drug screening. Traditional two-dimensional (2D) cultures fail to propagate a large subpopulation of murine primary tumors in vitro. However, three-dimensional (3D) air-liquid interface (ALI) cultures, which are employed to grow normal lung organoids, can be used to efficiently culture cancerous lung tumor cells.

View Article and Find Full Text PDF

Targeting tumor metabolism through dietary interventions is an area of growing interest, and may help to improve the significant mortality of aggressive cancers, including non-small cell lung cancer (NSCLC). Here we show that the restriction of methionine in the aggressive KRAS-mutant NSCLC autochthonous mouse model drives decreased tumor progression and increased carboplatin treatment efficacy. Importantly, methionine restriction during early stages of tumorigenesis prevents the lineage switching known to occur in the model, and alters the tumor immune microenvironment (TIME) to have fewer tumor-infiltrating neutrophils.

View Article and Find Full Text PDF

The nasal mucosa is often the initial site of respiratory viral infection, replication, and transmission. Understanding how infection shapes tissue-scale primary and memory responses is critical for designing mucosal therapeutics and vaccines. We generated a single-cell RNA-sequencing atlas of the murine nasal mucosa, sampling three regions during primary influenza infection and rechallenge.

View Article and Find Full Text PDF

The nasal mucosa is frequently the initial site of respiratory viral infection, replication, and transmission. Recent work has started to clarify the independent responses of epithelial, myeloid, and lymphoid cells to viral infection in the nasal mucosa, but their spatiotemporal coordination and relative contributions remain unclear. Furthermore, understanding whether and how primary infection shapes tissue-scale memory responses to secondary challenge is critical for the rational design of nasal-targeting therapeutics and vaccines.

View Article and Find Full Text PDF

Unlabelled: Two important factors that contribute to resistance to immune checkpoint inhibitors (ICI) are an immune-suppressive microenvironment and limited antigen presentation by tumor cells. In this study, we examine whether inhibition of the methyltransferase enhancer of zeste 2 (EZH2) can increase ICI response in lung squamous cell carcinomas (LSCC). Our in vitro experiments using two-dimensional human cancer cell lines as well as three-dimensional murine and patient-derived organoids treated with two inhibitors of the EZH2 plus IFNγ showed that EZH2 inhibition leads to expression of both MHC class I and II (MHCI/II) expression at both the mRNA and protein levels.

View Article and Find Full Text PDF

Background & Aims: The intestinal epithelium interfaces with a diverse milieu of luminal contents while maintaining robust digestive and barrier functions. Facultative intestinal stem cells are cells that survive tissue injury and divide to re-establish the epithelium. Prior studies have shown autophagic state as functional marker of facultative intestinal stem cells, but regulatory mechanisms are not known.

View Article and Find Full Text PDF

Intestinal epithelial transit-amplifying cells are essential stem progenitors required for intestinal homeostasis, but their rapid proliferation renders them vulnerable to DNA damage from radiation and chemotherapy. Despite these cells' critical roles in intestinal homeostasis and disease, few studies have described genes that are essential to transit-amplifying cell function. We report that RNA methyltransferase-like 3 (METTL3) is required for survival of transit-amplifying cells in the murine small intestine.

View Article and Find Full Text PDF

Background And Aims: A key histopathological feature of inflammatory bowel disease is damage to the mucosa, including breakdown of the epithelial barrier. Human enteroids and colonoids are a critical bench-to-bedside tool for studying the epithelium in inflammatory bowel disease. The goal of the current study was to define transcriptional differences in healthy versus diseased subjects that are sustained in enteroids and colonoids, including from disease-spared tissue.

View Article and Find Full Text PDF

Unlabelled: Biogenic synthesis of inorganic nanomaterials has been demonstrated for both wild and engineered bacterial strains. In many systems the nucleation and growth of nanomaterials is poorly controlled and requires concentrations of heavy metals toxic to living cells. Here, we utilized the tools of synthetic biology to engineer a strain of Escherichia coli capable of synthesizing cadmium sulfide nanoparticles from low concentrations of reactants with control over the location of synthesis.

View Article and Find Full Text PDF

Background: Viruses may drive immune mechanisms responsible for chronic rhinosinusitis with nasal polyposis (CRSwNP), but little is known about the underlying molecular mechanisms.

Objectives: To identify epigenetic and transcriptional responses to a common upper respiratory pathogen, rhinovirus (RV), that are specific to patients with CRSwNP using a primary sinonasal epithelial cell culture model.

Methods: Airway epithelial cells were collected at surgery from patients with CRSwNP (cases) and from controls without sinus disease, cultured, and then exposed to RV or vehicle for 48 h.

View Article and Find Full Text PDF

Two important factors that contribute to resistance to immune checkpoint inhibitors (ICIs) are an immune-suppressive microenvironment and limited antigen presentation by tumor cells. In this study, we examine if inhibition of the methyltransferase EZH2 can increase ICI response in lung squamous cell carcinomas (LSCCs). Our experiments using 2D human cancer cell lines as well as 3D murine and patient derived organoids treated with two inhibitors of the EZH2 plus interferon-γ (IFNγ) showed that EZH2 inhibition leads to expression of both major histocompatibility complex class I and II (MHCI/II) expression at both the mRNA and protein levels.

View Article and Find Full Text PDF

Lung cancer heterogeneity is a major barrier to effective treatments and encompasses not only the malignant epithelial cell phenotypes and genetics but also the diverse tumor-associated cell types. Current techniques used to investigate the tumor microenvironment can be time-consuming, expensive, complicated to interpret, and often involves destruction of the sample. Here we use standard hematoxylin and eosin-stained tumor sections and the HALO AI nuclear phenotyping software to characterize 6 distinct cell types (epithelial, mesenchymal, macrophage, neutrophil, lymphocyte, and plasma cells) in both murine lung cancer models and human lung cancer samples.

View Article and Find Full Text PDF

Intestinal epithelial transit amplifying cells are essential stem progenitors required for intestinal homeostasis, but their rapid proliferation renders them vulnerable to DNA damage from radiation and chemotherapy. Despite their critical roles in intestinal homeostasis and disease, few studies have described genes that are essential to transit amplifying cell function. We report that the RNA methyltransferase, METTL3, is required for survival of transit amplifying cells in the murine small intestine.

View Article and Find Full Text PDF

Calorie restriction can enhance the regenerative capacity of the injured intestinal epithelium. Among other metabolic changes, calorie restriction can activate the autophagy pathway. Although independent studies have attributed the regenerative benefit of calorie restriction to downregulation of mTORC1, it is not known whether autophagy itself is required for the regenerative benefit of calorie restriction.

View Article and Find Full Text PDF

Inhibitors of the Polycomb Repressive Complex 2 (PRC2) histone methyltransferase EZH2 are approved for certain cancers, but realizing their wider utility relies upon understanding PRC2 biology in each cancer system. Using a genetic model to delete Ezh2 in KRAS-driven lung adenocarcinomas, we observed that Ezh2 haplo-insufficient tumors were less lethal and lower grade than Ezh2 fully-insufficient tumors, which were poorly differentiated and metastatic. Using three-dimensional cultures and in vivo experiments, we determined that EZH2-deficient tumors were vulnerable to H3K27 demethylase or BET inhibitors.

View Article and Find Full Text PDF

Aberrant lung cell differentiation is a hallmark of many lung diseases including chronic obstructive pulmonary disease (COPD). The EZH2-containing Polycomb Repressive Complex 2 (PRC2) regulates embryonic lung stem cell fate, but its role in adult lung is obscure. Histological analysis of patient tissues revealed that loss of PRC2 activity was correlated with aberrant bronchiolar cell differentiation in COPD lung.

View Article and Find Full Text PDF

The intestinal epithelium exhibits a rapid and efficient regenerative response to injury. Emerging evidence supports a model where plasticity of differentiated cells, particularly those in the secretory lineages, contributes to epithelial regeneration upon ablation of injury-sensitive stem cells. However, such facultative stem cell activity is rare within secretory populations.

View Article and Find Full Text PDF
Article Synopsis
  • Electroactive bacterial biofilms can integrate living cells and electronic components, but controlling their geometry on electrodes has been difficult.
  • A new lithographic method was created to precisely pattern these biofilms by manipulating a specific protein expression using blue light.
  • This method allowed for adjustable conductivity based on the biofilm's pattern size and confirmed theoretical models about how electrons move through the living biofilms, paving the way for advancements in bioelectronics.
View Article and Find Full Text PDF

Maternal asthma (MA) is among the most consistent risk factors for asthma in children. Possible mechanisms for this observation are epigenetic modifications in utero that have lasting effects on developmental programs in children of mothers with asthma. To test this hypothesis, we performed differential DNA methylation analyses of 398,186 individual CpG sites in primary bronchial epithelial cells (BECs) from 42 nonasthma controls and 88 asthma cases, including 56 without MA (NMA) and 32 with MA.

View Article and Find Full Text PDF

Image plates (IPs) are a popular detector in the field of laser driven ion acceleration, owing to their high dynamic range and reusability. An absolute calibration of these detectors to laser-driven protons in the routinely produced tens of MeV energy range is, therefore, essential. In this paper, the response of Fujifilm BAS-TR IPs to 1-40 MeV protons is calibrated by employing the detectors in high resolution Thomson parabola spectrometers in conjunction with a CR-39 nuclear track detector to determine absolute proton numbers.

View Article and Find Full Text PDF

Background: Comorbidity is the co-occurrence of two or more disorders in the same person.

Aim: This study investigated the frequency of comorbid conditions, in children and adolescents, with autism spectrum disorder (ASD), cerebral palsy (CP), and a comorbid diagnosis of ASD and CP.

Method: Ninety-six children and adolescents with ASD, CP, and both ASD and CP aged between 4 and 18 years participated in this study.

View Article and Find Full Text PDF

Microbes are champions of nanomaterial synthesis. By virtue of their incredible native range─from thermal vents to radioactive soil─microbes evolved tools to thrive on inorganic material, and, in their normal course of living, forge nanomaterials. In recent decades, synthetic biologists have engineered a vast array of functional nanomaterials using genetic tools that control the natural ability of bacteria to perform complex redox chemistry, maintain steep chemical gradients, and express biomolecular scaffolds.

View Article and Find Full Text PDF

Background: Genome-wide association studies (GWASs) have identified thousands of variants associated with asthma and other complex diseases. However, the functional effects of most of these variants are unknown. Moreover, GWASs do not provide context-specific information on cell types or environmental factors that affect specific disease risks and outcomes.

View Article and Find Full Text PDF

Targeting the epidermal growth factor receptor (EGFR) with tyrosine kinase inhibitors (TKIs) is one of the major precision medicine treatment options for lung adenocarcinoma. Due to common development of drug resistance to first- and second-generation TKIs, third-generation inhibitors, including osimertinib and rociletinib, have been developed. A model of EGFR-driven lung cancer and a method to develop tumors of distinct epigenetic states through 3D organotypic cultures are described here.

View Article and Find Full Text PDF